The value of increased intestinal permeability in the pathogenesis of internal diseases

Cover Page

Cite item

Full Text

Abstract

In the process of evolution in the gastrointestinal tract, a system of protection against bacterial and food antigens from getting into the blood was formed. The causes of increased intestinal permeability (IIP) can be microbiota imbalance, use of antibiotics, non-steroidal anti-inflammatory drugs, stress, diet rich in fructose, glucose, sucrose and long-chain fatty acids. The appearance of IIP may be of paramount importance in the pathogenesis of autoimmune diseases. A diet low in fermentable oligodimonosaccharides and polyols, pre- and probiotics, polyphenols, vitamins, short-chain fatty acids, dietary fiber, glutamine contributes to the reduction of IIP. It has been established that the cytoprotector rebamipide strengthens the barrier function throughout the gastrointestinal tract, which is reflected in practical recommendations for its use in diseases accompanied by IIP. The study of this direction will contribute to the emergence of a new strategy for the treatment of internal diseases.

About the authors

Asfold I. Parfenov

Loginov Moscow Clinical Scientific Center

Author for correspondence.
Email: asfold@mail.ru
ORCID iD: 0000-0002-9782-4860

д-р мед. наук, проф., зав. отд. патологии кишечника

Russian Federation, Moscow

References

  1. Рыбальченко О.В., Бондаренко В.М. Образование биопленок симбионтными представителями микробиоты кишечника как форма существования бактерий. Вестник СПбГУ. Cерия 11. Медицина. 2013;11(1):179-86 [Rybalchenko OV, Bondarenko VM. Biofilm formation by symbiotic representatives of intestinal microbiota as a form of bacteria. Vestnik of Saint-Petersburg University. Series 11. Medicine. 2013;11(1):179-86 (in Russian)].
  2. Crawley SW, Mooseker MS, Tyska MJ. Shaping the intestinal brush border. J Cell Biol. 2014;207(4):441-51. doi: 10.1083/jcb.201407015
  3. Ensari A, Marsh MN. Exploring the villus. Gastroenterol Hepatol Bed Bench. 2018;11(3):181-90.
  4. Coch RA, Leube RE. Intermediate Filaments and Polarization in the Intestinal Epithelium. Cells. 2016;5(3):32. doi: 10.3390/cells5030032
  5. Pardo-Camacho C, Ganda Mall JP, Martínez C, et al. Mucosal Plasma Cell Activation and Proximity to Nerve Fibres Are Associated with Glycocalyx Reduction in Diarrhoea-Predominant Irritable Bowel Syndrome: Jejunal Barrier Alterations Underlying Clinical Manifestations. Cells. 2022;11(13):2046. doi: 10.3390/cells11132046
  6. König J, Wells J, Cani PD, et al. Human Intestinal Barrier Function in Health and Disease. Clin Transl Gastroenterol. 2016;7(10):e196. doi: 10.1038/ctg.2016.54
  7. Oshima T, Miwa H. Gastrointestinal mucosal barrier function and diseases. J Gastroenterol. 2016;51(8):768-78. doi: 10.1007/s00535-016-1207-z
  8. Уголев А.М. Эволюция пищеварения и принципы эволюции функций: элементы современного функционализма. Л.: Наука, 1985 [Ugolev AM. Evoliutsiia pishchevareniia i printsipy evoliutsii funktsii: elementy sovremennogo funktsionalizma. Leningrad: Nauka, 1985 (in Russian)].
  9. Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut. 2019;68(8):1516-26. doi: 10.1136/gutjnl-2019-318427
  10. Симаненков В.И., Маев И.В., Ткачева О.Н., и др. Синдром повышенной эпителиальной проницаемости в клинической практике. Мультидисциплинарный национальный консенсус. Кардиоваскулярная терапия и профилактика. 2021;20(1):2758 [Simanenkov VI, Maev IV, Tkacheva ON, et al. Syndrome of increased epithelial permeability in clinical practice. Multidisciplinary national Consensus. Cardiovascular Therapy and Prevention.2021;20(1):2758 (in Russian)]. doi: 10.15829/1728-8800-2021-2758
  11. Carding S, Verbeke K, Vipond DT, et al. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015;26:26191. doi: 10.3402/mehd.v26.26191
  12. Cappello F, Rappa F, Canepa F, et al. Probiotics can cure oral aphthous-like ulcers in inflammatory bowel disease patients: A review of the literature and a working hypothesis. Int J Mol Sci. 2019;20(20):5026. doi: 10.3390/ijms20205026
  13. Ющук Н.Д., Мартынов Ю.В., Кулагина М.Г., Бродов Л.Е. Острые кишечные инфекции. М.: ГЭОТАР-Медиа, 2012 [Iushchuk ND, Martynov IuV, Kulagina MG, Brodov LE. Ostrye kishechnye infektsii. Moscow: GEOTAR-Media, 2012 (in Russian)].
  14. Mekonnen SA, Merenstein D, Fraser CM, Marco ML. Molecular mechanisms of probiotic prevention of antibiotic-associated diarrhea. Curr Opin Biotechnol. 2020;61:226-34. doi: 10.1016/j.copbio.2020.01.005
  15. Karl JP, Margolis LM, Madslien EH, et al. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am J Physiol Gastrointest Liver Physiol. 2017;312(6):G559-71. doi: 10.1152/ajpgi.00066.2017
  16. Kelly JR, Kennedy PJ, Cryan JF, et al. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. 2015;9:392. doi: 10.3389/fncel.2015.00392
  17. Tai FWD, McAlindon ME. NSAIDs and the small bowel. Curr Opin Gastroenterol. 2018;34(3):175-82. doi: 10.1097/MOG.0000000000000427
  18. Di Tommaso N, Gasbarrini A, Ponziani FR. Intestinal Barrier in Human Health and Disease. Int J Environ Res Public Health. 2021;18(23):12836. doi: 10.3390/ijerph182312836
  19. Binienda A, Twardowska A, Makaro A, Salaga M. Dietary Carbohydrates and Lipids in the Pathogenesis of Leaky Gut Syndrome: An Overview. Int J Mol Sci. 2020;21(21):8368. doi: 10.3390/ijms21218368
  20. Steinert RE, Feinle-Bisset C, Asarian L, et al. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev. 2017;97(1):411-63. doi: 10.1152/physrev.00031.2014
  21. Aleman RS, Moncada M, Aryana KJ. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules. 2023;28(2):619. doi: 10.3390/molecules28020619
  22. Bertiaux-Vandaële N, Youmba SB, Belmonte L, et al. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am J Gastroenterol. 2011;106(12):2165-73. doi: 10.1038/ajg.2011.257
  23. Martínez C, Vicario M, Ramos L, et al. The jejunum of diarrhea-predominant irritable bowel syndrome shows molecular alterations in the tight junction signaling pathway that are associated with mucosal pathobiology and clinical manifestations. Am J Gastroenterol. 2012;107(5):736-46. doi: 10.1038/ajg.2011.472
  24. Fasano A. Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications. Clin Gastroenterol Hepatol. 2012;10(10):1096-100. doi: 10.1016/j.cgh.2012.08.012
  25. Hering NA, Fromm M, Schulzke JD. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J Physiol. 2012;590(5):1035-44. doi: 10.1113/jphysiol.2011.224568
  26. Lee B, Moon KM, Kim CY. Tight Junction in the Intestinal Epithelium: Its Association with Diseases and Regulation by Phytochemicals. J Immunol Res. 2018;2018:2645465. doi: 10.1155/2018/2645465
  27. Lee JY, Wasinger VC, Yau YY, et al. Molecular Pathophysiology of Epithelial Barrier Dysfunction in Inflammatory Bowel Diseases. Proteomes. 2018;6(2):17. doi: 10.3390/proteomes6020017
  28. Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49(6):1877-87. doi: 10.1002/hep.22848
  29. Pasini E, Aquilani R, Testa C, et al. Pathogenic Gut Flora in Patients With Chronic Heart Failure. JACC Heart Fail. 2016;4(3):220-7. doi: 10.1016/j.jchf.2015.10.009
  30. Fasano A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res. 2020;9:F1000 Faculty Rev-69. doi: 10.12688/f1000research.20510.1
  31. Быкова С.В., Сабельникова Е.А., Новиков А.А., и др. Зонулин и I-FABP – маркеры повреждения энтероцитов при целиакии. Терапевтический архив. 2022;94(4):511-6 [Bykova SV, Sabelnikova EA, Novikov AA, et al. Zonulin and I-FABP are markers of enterocyte damage in celiac disease. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(4):511-6 (in Russian)]. doi: 10.26442/00403660.2022.04.201480
  32. Mu Q, Kirby J, Reilly CM, Luo XM. Leaky Gut As a Danger Signal for Autoimmune Diseases. Front Immunol. 2017;8:598. doi: 10.3389/fimmu.2017.00598
  33. Бауло Е.В., Белостоцкий Н.И., Ахмадуллина О.В., и др. Влияние диеты FODMAP и ребамипида на активность дисахаридаз у больных энтеропатией с нарушением мембранного пищеварения. Терапевтический архив. 2023;95(2):140-4 [Baulo EV, Belostotsky NI, Akhmadullina OV, et al. The effect of the FODMAP and rebamipid diet on the activity of disaccharidases in patients with enteropathy with impaired membrane digestion. Terapevticheskii Arkhiv (Ter. Arkh.). 2023;95(2):140-4 (in Russian)]. doi: 10.26442/00403660.2023.2.202057
  34. Парфенов А.И. Энтеропатия с нарушением мембранного пищеварения. 2-е изд. М.: Медконгресс, 2022 [Parfenov AI. Enteropatiia s narusheniem membrannogo pishchevareniia. 2-e izd. Moscow: Medkongress, 2022 (in Russian)].
  35. Rao RK, Samak G. Protection and Restitution of Gut Barrier by Probiotics: Nutritional and Clinical Implications. Curr Nutr Food Sci. 2013;9(2):99-107. doi: 10.2174/1573401311309020004
  36. Anderson RC, Cookson AL, McNabb WC, et al. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol. 2010;10:316. doi: 10.1186/1471-2180-10-316
  37. Singh TP, Natraj BH. Next-generation probiotics: a promising approach towards designing personalized medicine. Crit Rev Microbiol. 2021;47(4):479-98. doi: 10.1080/1040841X.2021.1902940
  38. Moeinian M, Ghasemi-Niri SF, Mozaffari S, et al. Beneficial effect of butyrate, Lactobacillus casei and L-carnitine combination in preference to each in experimental colitis. World J Gastroenterol. 2014;20(31):10876-85. doi: 10.3748/wjg.v20.i31.10876
  39. Ojo BA, O'Hara C, Wu L, et al. Wheat Germ Supplementation Increases Lactobacillaceae and Promotes an Anti-inflammatory Gut Milieu in C57BL/6 Mice Fed a High-Fat, High-Sucrose Diet. J Nutr. 2019;149(7):1107-15. doi: 10.1093/jn/nxz061
  40. Meng D, Sommella E, Salviati E, et al. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr Res. 2020;88(2):209-17. doi: 10.1038/s41390-019-0740-x
  41. Alvarez CS, Badia J, Bosch M, et al. Outer Membrane Vesicles and Soluble Factors Released by Probiotic Escherichia coli Nissle 1917 and Commensal ECOR63 Enhance Barrier Function by Regulating Expression of Tight Junction Proteins in Intestinal Epithelial Cells. Front Microbiol. 2016;7:1981. doi: 10.3389/fmicb.2016.01981
  42. Kruis W, Fric P, Pokrotnieks J, et al. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut. 2004;53(11):1617-23. doi: 10.1136/gut.2003.037747
  43. Howarth GS, Wang H. Role of endogenous microbiota, probiotics and their biological products in human health. Nutrients. 2013;5(1):58-81. doi: 10.3390/nu5010058
  44. Rose EC, Odle J, Blikslager AT, Ziegler AL. Probiotics, Prebiotics and Epithelial Tight Junctions: A Promising Approach to Modulate Intestinal Barrier Function. Int J Mol Sci. 2021;22(13):6729. doi: 10.3390/ijms22136729
  45. Davani-Davari D, Negahdaripour M, Karimzadeh I, et al. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods. 2019;8(3):92. doi: 10.3390/foods8030092
  46. Cornick S, Tawiah A, Chadee K. Roles and regulation of the mucus barrier in the gut. Tissue Barriers. 2015;3(1-2):e982426. doi: 10.4161/21688370.2014.982426
  47. Tsai YL, Lin TL, Chang CJ, et al. Probiotics, prebiotics and amelioration of diseases. J Biomed Sci. 2019;26(1):3. doi: 10.1186/s12929-018-0493-6
  48. Rauf A, Abu-Izneid T, Khalil AA, et al. Berberine as a Potential Anticancer Agent: A Comprehensive Review. Molecules. 2021;26(23):7368. doi: 10.3390/molecules26237368
  49. Zhou X, Ren M, Yang J, et al. Curcumin Improves Epithelial Barrier Integrity of Caco-2 Monolayers by Inhibiting Endoplasmic Reticulum Stress and Subsequent Apoptosis. Gastroenterol Res Pract. 2021;2021:5570796. doi: 10.1155/2021/5570796
  50. Cantorna MT, Snyder L, Arora J. Vitamin A and vitamin D regulate the microbial complexity, barrier function, and the mucosal immune responses to ensure intestinal homeostasis. Crit Rev Biochem Mol Biol. 2019;54(2):184-92. doi: 10.1080/10409238.2019.1611734
  51. Yeung CY, Chiang Chiau JS, Cheng ML, et al. Effects of Vitamin D-Deficient Diet on Intestinal Epithelial Integrity and Zonulin Expression in a C57BL/6 Mouse Model. Front Med (Lausanne). 2021;8:649818. doi: 10.3389/fmed.2021.649818
  52. Saeedi BJ, Kao DJ, Kitzenberg DA, et al. HIF-dependent regulation of claudin-1 is central to intestinal epithelial tight junction integrity. Mol Biol Cell. 2015;26(12):2252-62. doi: 10.1091/mbc.E14-07-1194
  53. Wang HB, Wang PY, Wang X, et al. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig Dis Sci. 2012;57(12):3126-35. doi: 10.1007/s10620-012-2259-4
  54. Desai MS, Seekatz AM, Koropatkin NM, et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell. 2016;167(5):1339-53.e21. doi: 10.1016/j.cell.2016.10.043
  55. Balasubramanian K, Kumar S, Singh RR, et al. Metabolism of the colonic mucosa in patients with inflammatory bowel diseases: an in vitro proton magnetic resonance spectroscopy study. Magn Reson Imaging. 2009;27(1):79-86. doi: 10.1016/j.mri.2008.05.014
  56. Wang J, Ji H, Wang S, et al. Probiotic Lactobacillus plantarum Promotes Intestinal Barrier Function by Strengthening the Epithelium and Modulating Gut Microbiota. Front Microbiol. 2018;9:1953. doi: 10.3389/fmicb.2018.01953
  57. Wu W, Wang S, Liu Q, et al. Metformin Protects against LPS-Induced Intestinal Barrier Dysfunction by Activating AMPK Pathway. Mol Pharm. 2018;15(8):3272-84. doi: 10.1021/acs.molpharmaceut.8b00332
  58. Deng J, Zeng L, Lai X, et al. Metformin protects against intestinal barrier dysfunction via AMPKα1-dependent inhibition of JNK signalling activation. J Cell Mol Med. 2018;22(1):546-57. doi: 10.1111/jcmm.13342
  59. Zhou HY, Zhu H, Yao XM, et al. Metformin regulates tight junction of intestinal epithelial cells via MLCK-MLC signaling pathway. Eur Rev Med Pharmacol Sci. 2017;21(22):5239-46. doi: 10.26355/eurrev_201711_13847
  60. Sun EW, Martin AM, Wattchow DA, et al. Metformin Triggers PYY Secretion in Human Gut Mucosa. J Clin Endocrinol Metab. 2019;104(7):2668-74. doi: 10.1210/jc.2018-02460
  61. Yasuda-Onozawa Y, Handa O, Naito Y, et al. Rebamipide upregulates mucin secretion of intestinal goblet cells via Akt phosphorylation. Mol Med Rep. 2017;16(6):8216-22. doi: 10.3892/mmr.2017.7647
  62. Звяглова М.Ю., Князев О.В., Парфенов А.И. Фармакологический и клинический профиль ребамипида: новые терапевтические мишени. Терапевтический архив. 2020;92(2):104-11 [Zvyaglova MYu, Knyazev OV, Parfenov AI. Pharmacological and clinical feature of rebamipide: new therapeutic targets. Terapevticheskii Arkhiv (Ter. Arkh.). 2020;92(2):104-11 (in Russian)]. doi: 10.26442/00403660.2020.02.000569
  63. Парфенов А.И., Белостоцкий Н.И., Хомерики С.Г., и др. Ребамипид повышает активность дисахаридаз у больных энтеропатией с нарушением мембранного пищеварения. Пилотное исследование. Терапевтический архив. 2019;91(2):25-31 [Parfenov AI, Belostotsky NI, Khomeriki SG, et al. Rebamipide increases the disaccharidases activity in patients with enteropathy with impaired membrane digestion. Pilot study. Terapevticheskii Arkhiv (Ter. Arkh.). 2019;91(2):25-31 (in Russian)]. doi: 10.26442/00403660.2019.02.000123
  64. Симаненков В.И., Маев И.В., Ткачева О.Н., и др. Эпителий-протективная терапия при коморбидных заболеваниях. Практические рекомендации для врачей. Терапевтический архив. 2022;94(8):940-56 [Simanenkov VI, Maev IV, Tkacheva ON, et al. Epithelial protective therapy in comorbid diseases.Practical Guidelines for Physicians. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(8):940-56 (in Russian)]. doi: 10.26442/00403660.2022.08.201523

Copyright (c) 2024 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies