Clinical effectiveness and pharmacokinetics of gliflozin from the point of view of individual genetic characteristics: A review

Cover Page

Cite item

Full Text

Abstract

A review of publications devoted to the analysis of genetic polymorphisms and features of the functioning of genes that affect the pharmacokinetics and pharmacodynamics of sodium-glucose cotransporter-2 inhibitors (SGLT2i) is presented. Objective of the study was to reveal information about genes whose polymorphism may affect the effectiveness of SGLT2i. The review was carried out in accordance with the PRISMA 2020 recommendations, the search for publications was carried out in the PubMed databases (including Medline), Web of Science, as well as Russian scientific electronic libraries eLIBRARY.RU from 1993 to 2022. Polymorphisms in the structure of several genes (SLC5A2, UGT1A9, ABCB1, PNPLA3) have been described that may affect the treatment of type 2 diabetes mellitus complicated by diseases such as chronic heart failure, chronic kidney disease, or non-alcoholic fatty liver disease. The information found on the genetic features of the development of the effects of SGLT2i is limited to a description of the differences in their pharmacokinetics. The relevance of currently available pharmacogenetic studies is largely constrained by small sample sizes.

About the authors

Evgenya L. Golovina

Siberian State Medical University

Author for correspondence.
Email: golovina.el@ssmu.ru
ORCID iD: 0000-0001-6132-9617

канд. мед. наук, доц. каф. фармакологии ФГБОУ ВО СибГМУ

Russian Federation, Tomsk

Olga E. Vaizova

Siberian State Medical University

Email: golovina.el@ssmu.ru
ORCID iD: 0000-0003-4083-976X

д-р мед. наук, проф., проф. каф. фармакологии ФГБОУ ВО СибГМУ

Russian Federation, Tomsk

Marina V. Meleshko

Siberian State Medical University

Email: golovina.el@ssmu.ru
ORCID iD: 0000-0001-8405-5655

канд. биол. наук, доц. каф. фармакологии ФГБОУ ВО СибГМУ

Russian Federation, Tomsk

Iuliia G. Samoilova

Siberian State Medical University

Email: golovina.el@ssmu.ru
ORCID iD: 0000-0002-2667-4842

д-р мед. наук, проф., зав. каф. педиатрии с курсом эндокринологии ФГБОУ ВО СибГМУ

Russian Federation, Tomsk

Daria V. Podchinenova

Siberian State Medical University

Email: golovina.el@ssmu.ru
ORCID iD: 0000-0001-6212-4568

канд. мед. наук, доц. каф. педиатрии с курсом эндокринологии ФГБОУ ВО СибГМУ

Russian Federation, Tomsk

Anastasiia A. Borozinets

Sechenov First Moscow State Medical University (Sechenov University)

Email: golovina.el@ssmu.ru
ORCID iD: 0009-0008-4980-1489

студентка 5-го курса Института клинической медицины им. Н.В. Склифосовского ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» (Сеченовский Университет)

Russian Federation, Moscow

Mariia V. Matveeva

Siberian State Medical University

Email: golovina.el@ssmu.ru
ORCID iD: 0000-0001-9966-6686

д-р мед. наук, проф. каф. педиатрии с курсом эндокринологии ФГБОУ ВО СибГМУ

Russian Federation, Tomsk

Dmitry A. Kudlay

Sechenov First Moscow State Medical University (Sechenov University); National Research Center – Institute of Immunology

Email: golovina.el@ssmu.ru
ORCID iD: 0000-0003-1878-4467

чл.-кор. РАН, д-р мед. наук, проф. каф. фармакологии Института фармации ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» (Сеченовский Университет), вед. науч. сотр. лаб. персонализированной медицины и молекулярной иммунологии №71 ФГБУ «ГНЦ “Институт иммунологии”»

Russian Federation, Moscow; Moscow

References

  1. Imamovic Kadric S, Kulo Cesic A, Dujic T. Pharmacogenetics of new classes of antidiabetic drugs. Bosn J Basic Med Sci. 2021;21(6):659-71. doi: 10.17305/bjbms.2021.5646
  2. Российская ассоциация эндокринологов. Клинические рекомендации по лечению сахарного диабета 2 типа у взрослых. Режим доступа: https://cr.minzdrav.gov.ru/schema/290_2. Ссылка активна на 30.04.2023 [Rossiiskaia assotsiatsiia endokrinologov. Klinicheskie rekomendatsii po lecheniiu sakharnogo diabeta 2 tipa u vzroslykh. Available at: https://cr.minzdrav.gov.ru/schema/290_2. Accessed: 30.04.2023 (in Russian)].
  3. Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91(2):733-94. doi: 10.1152/physrev.00055.2009
  4. Салухов В.В., Халимов Ю.Ш., Шустов С.Б., Попов С.И. Ингибиторы SGLT2 и почки: механизмы и основные эффекты у больных сахарным диабетом 2 типа. Сахарный диабет. 2020;23(5):475-91 [Salukhov VV, Khalimov YuS, Shustov SB, Popov SI. SGLT2 inhibitors and kidneys: mechanisms and main effects in diabetes mellitus patients. Diabetes Mellitus. 2020;23(5):475-91 (in Russian)]. doi: 10.14341/DM12123
  5. Garcia-Ropero A, Badimon JJ, Santos-Gallego CG. The pharmacokinetics and pharmacodynamics of SGLT2 inhibitors for type 2 diabetes mellitus: the latest developments. Expert Opin Drug Metab Toxicol. 2018;14(12):1287-302. doi: 10.1080/17425255.2018.1551877
  6. Lupsa BC, Inzucchi SE. Use of SGLT2 inhibitors in type 2 diabetes: weighing the risks and benefits. Diabetologia. 2018;61(10):2118-25. doi: 10.1007/s00125-018-4663-6
  7. Scheen AJ. An update on the safety of SGLT2 inhibitors. Expert Opin Drug Saf. 2019;18(4):295-311. doi: 10.1080/14740338.2019.1602116
  8. Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020;383(15):1436-46. doi: 10.1056/NEJMoa2024816
  9. Wells RG, Mohandas TK, Hediger MA. Localization of the Na+/glucose cotransporter gene SGLT2 to human chromosome 16 close to the centromere. Genomics. 1993;17(3):787-9. doi: 10.1006/geno.1993.1411
  10. Zimdahl H, Haupt A, Brendel M, et al. Influence of common polymorphisms in the SLC5A2 gene on metabolic traits in subjects at increased risk of diabetes and on response to empagliflozin treatment in patients with diabetes. Pharmacogenet Genomics. 2017;27(4):135-42. doi: 10.1097/FPC.0000000000000268
  11. Enigk U, Breitfeld J, Schleinitz D, et al. Role of genetic variation in the human sodium-glucose cotransporter 2 gene (SGLT2) in glucose homeostasis. Pharmacogenomics. 2011;12(8):1119-26. doi: 10.2217/pgs.11.69
  12. Bonner C, Kerr-Conte J, Gmyr V, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med. 2015;21(5):512-7. doi: 10.1038/nm.3828
  13. Ordelheide AM, Böhm A, Kempe-Teufel D, et al. Common variation in the sodium/glucose cotransporter 2 gene SLC5A2 does neither affect fasting nor glucose-suppressed plasma glucagon concentrations. PLoS One. 2017;12(5):e0177148. doi: 10.1371/journal.pone.0177148
  14. Gong QH, Cho JW, Huang T, et al. Thirteen UDPglucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics. 2001;11(4):357-68. doi: 10.1097/00008571-200106000-00011
  15. Naagaard MD, Chang R, Någård M, et al. Common UGT1A9 polymorphisms do not have a clinically meaningful impact on the apparent oral clearance of dapagliflozin in type 2 diabetes mellitus. Br J Clin Pharmacol. 2022;88(4):1942-6. doi: 10.1111/bcp.15117
  16. Hoeben E, De Winter W, Neyens M, et al. Population Pharmacokinetic Modeling of Canagliflozin in Healthy Volunteers and Patients with Type 2 Diabetes Mellitus. Clin Pharmacokinet. 2016;55(2):209-23. doi: 10.1007/s40262-015-0307-x
  17. Francke S, Mamidi RN, Solanki B, et al. In vitro metabolism of canagliflozin in human liver, kidney, intestine microsomes, and recombinant uridine diphosphate glucuronosyltransferases (UGT) and the effect of genetic variability of UGT enzymes on the pharmacokinetics of canagliflozin in humans. J Clin Pharmacol. 2015;55(9):1061-72. doi: 10.1002/jcph.506
  18. Hodges LM, Markova SM, Chinn LW, et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics. 2011;21(3):152-61. doi: 10.1097/FPC.0b013e3283385a1c
  19. Schwab M, Eichelbaum M, Fromm MF. Genetic polymorphisms of the human MDR1 drug transporter. Annu Rev Pharmacol Toxicol. 2003;43:285-307. doi: 10.1146/annurev.pharmtox.43.100901.140233
  20. Hwang JG, Jeong SI, Kim YK, et al. Common ABCB1 SNP, C3435T could affect systemic exposure of dapagliflozin in healthy subject. Transl Clin Pharmacol. 2022;30(4):212-25. doi: 10.12793/tcp.2022.30.e23
  21. Obermeier M, Yao M, Khanna A, et al. In vitro characterization and pharmacokinetics of dapagliflozin (BMS-512148), a potent sodium-glucose cotransporter type II inhibitor, in animals and humans. Drug Metab Dispos. 2010;38(3):405-14. doi: 10.1124/dmd.109.029165
  22. Haufroid V, Mourad M, Van Kerckhove V, et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics. 2004;14(3):147-54. doi: 10.1097/00008571-200403000-00002
  23. Mitsche MA, Hobbs HH, Cohen JC. Patatin-like phospholipase domain-containing protein 3 promotes transfer of essential fatty acids from triglycerides to phospholipids in hepatic lipid droplets. J Biol Chem. 2018;293(18):6958-68. doi: 10.1074/jbc.RA118.002333
  24. Adams LA, Anstee QM, Tilg H, Targher G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut. 2017;66(6):1138-53. doi: 10.1136/gutjnl-2017-313884
  25. Sumida Y, Seko Y, Yoneda M; Japan Study Group of NAFLD (JSG-NAFLD). Novel antidiabetic medications for non-alcoholic fatty liver disease with type 2 diabetes mellitus. Hepatol Res. 2017;47(4):266-80. doi: 10.1111/hepr.12856
  26. Eriksson JW, Lundkvist P, Jansson PA, et al. Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic fatty liver disease in people with type 2 diabetes: a double-blind randomised placebo-controlled study. Diabetologia. 2018;61(9):1923-34. doi: 10.1007/s00125-018-4675-2
  27. Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461-5. doi: 10.1038/ng.257

Copyright (c) 2023 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies