Antibiotic resistance – what can be done? A review

Cover Page

Cite item

Full Text

Abstract

Serious work is being carried out in the world in the field of combating antibiotic resistance: reducing the prescribing of antibiotics, banning the use of antibiotics as stimulators of animal growth, improving infection control. Antimicrobial resistance is systematically monitored not only in every medical center, but also at the national level. The collected data is successfully used to implement local and national recommendations on the optimal use of antibiotics.

About the authors

Olga V. Kisil

Gause Institute of New Antibiotics

Author for correspondence.
Email: olvv@mail.ru
ORCID iD: 0000-0003-4799-1318

канд. хим. наук, ученый секретарь

Russian Federation, Moscow

Nina I. Gabrielyan

Shumakov National Medical Research Center of Transplantology and Artificial Organs

Email: olvv@mail.ru
ORCID iD: 0000-0003-1941-8311

д-р мед. наук, зав. отд. эндотоксикозов и гнойно-септических осложнений

Russian Federation, Moscow

Viktor V. Maleev

Central Research Institute of Epidemiology

Email: olvv@mail.ru
ORCID iD: 0000-0001-5748-178X

акад. РАН, д-р мед. наук, проф., советник дир. по научной работе

Russian Federation, Moscow

References

  1. McGowan JE, Gerding DN. Does antibiotic restriction prevent resistance? New Horiz. 1996;4(3):370-6.
  2. Mölstad S, Löfmark S, Carlin K, et al. Lessons learnt during 20 years of the Swedish strategic programme against antibiotic resistance. Bull World Health Organ. 2017;95(11):764-73. doi: 10.2471/BLT.16.184374
  3. Guardabassi L, Prescott JF. Antimicrobial stewardship in small animal veterinary practice: from theory to practice. Vet Clin North Am Small Anim Pract. 2015;45(2):361-76. doi: 10.1016/j.cvsm.2014.11.005
  4. Beardsley JR, Williamson JC, Johnson JW, et al. Show me the money: long-term financial impact of an antimicrobial stewardship program. Infect Control Hosp Epidemiol. 2012;33(4):398-400. doi: 10.1086/664922
  5. Кондрашова H.M., Куколь Л.В. Фармакоэкономические исследования при инфекциях нижних дыхательных путей. Тихоокеанский медицинский журнал. 2003;4:7-12 [Kondrashova NM, Kukol LV. Pharmacoeconomic researches under inferior respiratory tract infections. Tihookeanskij medicinskij zhurnal. 2003;4:7-12 (in Russian)].
  6. Lai CC, Shi ZY, Chen Y, et al. Effects of various antimicrobial stewardship programs on antimicrobial usage and resistance among common gram-negative bacilli causing health care-associated infections: A multicenter comparison. J Microbiol Immunol Infect. 2016;49(1):74-82. doi: 10.1016/j.jmii.2015.05.011
  7. Huang TY, Hung CH, Lai LJ, et al. Implementation and outcomes of hospital-wide computerized antimicrobial approval system and on-the-spot education in a traumatic intensive care unit in Taiwan. J Microbiol Immunol Infect. 2018;51(5):672-80. doi: 10.1016/j.jmii.2017.10.004
  8. Chastre J, Wolff M, Fagon JY, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA. 2003;290(19):2588-98. doi: 10.1001/jama.290.19.2588
  9. Баранова О.Н. Современные взгляды на антибактериальную терапию неосложненных инфекций мочевыводящих путей. Вестник ВолГМУ. 2012;4(44):108-13 [Baranova ON. Modern approaches to antibiotic therapy of uncomplicated urinary tract infections. Vestnik VolGMU. 2012;4(44):108-13 (in Russian)].
  10. Standiford HC, Chan S, Tripoli M, et al. Antimicrobial stewardship at a large tertiary care academic medical center: cost analysis before, during, and after a 7-year program. Infect Control Hosp Epidemiol. 2012;33(4):338-45. doi: 10.1086/664909
  11. Monette J, Miller MA, Monette M, et al. Effect of an educational intervention on optimizing antibiotic prescribing in long-term care facilities. J Am Geriatr Soc. 2007;55(8):1231-5. doi: 10.1111/j.1532-5415.2007.01250.x
  12. Hürlimann D, Limacher A, Schabel M, et al. Improvement of antibiotic prescription in outpatient care: a cluster-randomized intervention study using a sentinel surveillance network of physicians. J Antimicrob Chemother. 2015;70(2):602-8. doi: 10.1093/jac/dku394
  13. Antibiotic Use in the United States, 2021 Update: Progress and Opportunities. 2021. Available at: https://www.cdc.gov/antibiotic-use/pdfs/stewardship-report-2021-H.pdf. Accessed: 05.10.2022.
  14. Suzuki SA. View on 20 years of antimicrobial resistance in japan by two national surveillance systems: the National epidemiological surveillance of infectious diseases and Japan nosocomial infections surveillance. Antibiotics (Basel). 2021;10(10):1189. doi: 10.3390/antibiotics10101189
  15. Cheng AC, Turnidge J, Collignon P, et al. Control of fluoroquinolone resistance through successful regulation, Australia. Emerg Infect Dis. 2012;18(9):1453-60. doi: 10.3201/eid1809.111515
  16. Dancer SJ, Kirkpatrick P, Corcoran DS, et al. Approaching zero: temporal effects of a restrictive antibiotic policy on hospital-acquired Clostridium difficile, extended-spectrum β-lactamase-producing coliforms and meticillin-resistant Staphylococcus aureus. Int J Antimicrob Agents. 2013;41(2):137-42. doi: 10.1016/j.ijantimicag.2012.10.013
  17. Parienti JJ, Cattoir V, Thibon P, et al. Hospital-wide modification of fluoroquinolone policy and meticillin-resistant Staphylococcus aureus rates: a 10-year interrupted time-series analysis. J Hosp Infect. 2011;78(2):118-22. doi: 10.1016/j.jhin.2011.03.008
  18. Conlon-Bingham GM, Aldeyab M, Scott M, et al. Effects of Antibiotic Cycling Policy on Incidence of Healthcare-Associated MRSA and Clostridioides difficile Infection in Secondary Healthcare Settings. Emerg Infect Dis. 2019;25(1):52-62. doi: 10.3201/eid2501.180111
  19. Li XJ, Liu Y, Du L, Kang Y. The effect of antibiotic-cycling strategy on antibiotic-resistant bacterial infections or colonization in intensive care units: A systematic review and meta-analysis. Worldviews Evid Based Nurs. 2020;17(4):319-28. doi: 10.1111/wvn.12454
  20. Виноградова К.А., Булгакова В.Г., Полин А.Н., Кожевин П.А. Устойчивость микроорганизмов к антибиотикам: резистома, ее объем, разнообразие и развитие. Антибиотики и химиотерапия. 2013;58(5-6):38-48 [Vinogradova KA, Bulgakova VG, Polin AN, Kozhevin PA. Microbial antibiotic resistance: resistome, its volume, diversity and development. Antibiotiki i himioterapiya. 2013;58(5-6):38-48 (in Russian)].
  21. Makowska N, Bresa K, Koczura R, et al. Urban wastewater as a conduit for pathogenic Gram-positive bacteria and genes encoding resistance to β-lactams and glycopeptides. Sci Total Environ. 2021;765:144176. doi: 10.1016/j.scitotenv.2020.144176
  22. Van Boeckel TP, Pires J, Silvester R, et al. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science. 2019;365(6459):aaw1944. doi: 10.1126/science.aaw1944
  23. Щекотихин А.Е., Олсуфьева Е.Н., Янковская В.С. Антибиотики и родственные вещества. М.: Лаборатория знаний, 2022 [Shchekotihin AE, Olsufeva EN, Yankovskaya VS. Antibiotics and related compounds. Moscow, 2022 (in Russian)].
  24. Gouliouris T, Raven KE, Ludden C, et al. Genomic surveillance of Enterococcus faecium reveals limited sharing of strains and resistance genes between livestock and humans in the United Kingdom. mBio. 2018;9(6):e01780-18. doi: 10.1128/mBio.01780-18
  25. Каменкова Т.С., Зайцева Е.А. Современные представления о механизмах резистентности к антимикробным препаратам Enterococcus faecalis и Enterococcus faecium. Антибиотики и химиотерапия. 2020;65(11-12):38-48 [Kamenkova TS, Zaitceva EA. Modern View on Enterococcus faecalis and Enterococcus faecium resistance mechanisms to antibiotics. Antibiotiki i himioterapiya. 2020;65(11-12):38-48 (in Russian)]. doi: 10.37489/0235-2990-2020-65-11-12-38-48
  26. Lhermie G, La Ragione RM, Weese JS, et al. Indications for the use of highest priority critically important antimicrobials in the veterinary sector. J Antimicrob Chemother. 2020;75(7):1671-80. doi: 10.1093/jac/dkaa104
  27. Лавренова В. Обзор ветеринарных антибиотиков группы макролидов. Ценовик. Сельскохозяйственное обозрение. 2018;1:93-109 [Lavrenova V. Review of veterinary antibiotics of the macrolide group. Tsenovik. Sel'skohozyaistvennoe obozrenie. 2018;1:93-109 (in Russian)].
  28. Postma M, Vanderhaeghen W, Sarrazin S, et al. Reducing antimicrobial usage in pig production without jeopardizing production parameters. Zoonoses Public Health. 2017;64(1):63-74. doi: 10.1111/zph.12283
  29. Roskam JL, Lansink AGJMO, Saatkamp HW. The technical and economic impact of veterinary interventions aimed at reducing antimicrobial use on broiler farms. Poult Sci. 2019;98(12):6644-58. doi: 10.3382/ps/pez517
  30. China will reduce the use of antibiotics on farms. April 27, 2018. Available at: https://www.pig333.com/latest_swine_news/china-will-reduce-the-use-of-antibiotics-on-farms_13669/ Accessed: 05.10.2022.
  31. Diallo OO, Baron SA, Abat C, et al. Antibiotic resistance surveillance systems: A review. J Glob Antimicrob Resist. 2020;23:430-8. doi: 10.1016/j.jgar.2020.10.009

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies