The experience in treatment of dengue fever using antiviral drug riamilovir in the Republic of Guinea (case report)

Cover Page

Cite item

Full Text

Abstract

Dengue fever is classified as one of the most common viral diseases with a transmission mechanism implemented through arthropod vectors. The expansion of of the Aedes aegypti mosquito is leading to a significant increase in the number of cases of dengue fever in more than 100 countries, highlighting the importance of developing and implementing specific prevention and treatment measures. Etiotropic drugs with proven efficacy against the pathogen are not registered, and the use of the vaccine is approved only among seropositive individuals. In this regard, pathogenetic treatment remains the main therapeutic strategy, however, work on the synthesis of antiviral drugs is being actively carried out. Due to the unique functions of non-structural proteins NS3 and NS5 in the viral replication cycle, they have become the main targets for studying the antiviral activity of a number of chemotherapy drugs. Of these proteins, due to the most conserved structure, the NS5 protein is a promising target for inhibition, however, success in obtaining a clinical effect using a number of available antiviral drugs has not been reached. This study describes the positive experience of using the nucleoside analogue riamilovir in the treatment of a patient with dengue fever in the Republic of Guinea.

About the authors

Oleg V. Maltsev

Kirov Military Medical Academy

Email: dr.snegur@gmail.com
ORCID iD: 0000-0002-6286-9946

канд. мед. наук, зам. нач. каф. инфекционных болезней (с курсом медицинской паразитологии и тропических заболеваний)

Russian Federation, Saint Petersburg

Kristina V. Kasyanenko

Kirov Military Medical Academy

Author for correspondence.
Email: dr.snegur@gmail.com
ORCID iD: 0000-0001-9294-7346

преподаватель каф. инфекционных болезней (с курсом медицинской паразитологии и тропических заболеваний)

Russian Federation, Saint Petersburg

Konstantin V. Zhdanov

Kirov Military Medical Academy

Email: dr.snegur@gmail.com
ORCID iD: 0000-0002-3679-1874

чл.-кор. РАН, д.м.н., проф., нач. каф. инфекционных болезней (с курсом медицинской паразитологии и тропических заболеваний)

Russian Federation, Saint Petersburg

Nikolay A. Malyshev

Vishnevsky National Medical Research Center of Surgery

Email: dr.snegur@gmail.com
ORCID iD: 0000-0002-1714-3337

д-р мед. наук, проф., проф.-консультант

Russian Federation, Moscow

Elena V. Kolomoets

UC “RUSAL”

Email: dr.snegur@gmail.com

координатор российско-гвинейского Научного клинико-диагностического центра эпидемиологии и микробиологии, нач. мед. службы

Guinea, Conakry

Victor K. Konomou

UC “RUSAL”

Email: dr.snegur@gmail.com

глав. врач российско-гвинейского Научного клинико-диагностического центра эпидемиологии и микробиологии

French Guiana, Conakry

References

  1. Kraemer MU, Sinka ME, Duda, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife. 2015;4:e08347. doi: 10.7554/eLife.08347
  2. Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504-7. doi: 10.1038/nature12060
  3. Amarasinghe A, Kuritsk JN, Letson GW, Margolis HS. Dengue virus infection in Africa. Emerg Infect Dis. 2011;17(8):1349-54. doi: 10.3201/eid1708.101515
  4. Murray CJ, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197-223. doi: 10.1016/S0140-6736(12)61689-4
  5. Messina JP, Brady OJ, Golding N, et al. The current and future global distribution and population at risk of dengue. Nat Microbiol. 2019;4(9):1508-15. doi: 10.1038/s41564-019-0476-8
  6. Mustafa MS, Rasotgi V, Jain S, Gupta V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med J Armed Forces India. 2015;71(1):67-70. doi: 10.1016/j.mjafi.2014.09.011
  7. Natali EN, Babrak LM, Miho E. Prospective Artificial Intelligence to Dissect the Dengue Immune Response and Discover Therapeutics. Front Immunol. 2021;12:574411. doi: 10.3389/fimmu.2021.574411
  8. Steuer C, Gege C, Fischl W, et al. Synthesis and biological evaluation of α-ketoamides as inhibitors of the Dengue virus protease with antiviral activity in cell-culture. Bioorg Med Chem. 2011;19(13):4067-74. doi: 10.1016/j.bmc.2011.05.015
  9. Luo D, Vasudevan SG, Lescar J. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res. 2015;118:148-58. doi: 10.1016/j.antiviral.2015.03.014
  10. Zou G, Chen YL, Dong H, et al. Functional analysis of two cavities in flavivirus NS5 polymerase. J Biol Chem. 2011;286(16):14362-72. doi: 10.1074/jbc.M110.214189
  11. Chang J, Schul W, Butters TD, et al. Combination of α-glucosidase inhibitor and ribavirin for the treatment of dengue virus infection in vitro and in vivo. Antiviral Res. 2011;89(1):26-34. doi: 10.1016/j.antiviral.2010.11.002
  12. Malinoski FJ, Hasty SE, Ussery MA, Dalrymple JM. Prophylactic ribavirin treatment of dengue type 1 infection in rhesus monkeys. Antiviral Res. 1990;13(3):139-49. doi: 10.1016/0166-3542(90)90029-7
  13. Yap TL, Xu T, Chen YL, et al. Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol. 2007;81(9):4753-65. doi: 10.1128/JVI.02283-06
  14. Malet H, Massé N, Selisko B, et al. The flavivirus polymerase as a target for drug discovery. Antiviral Res. 2008;80(1):23-35. doi: 10.1016/j.antiviral.2008.06.007
  15. Lim SP, Noble CG, Nilar S, et al. Discovery of Potent Non-nucleoside Inhibitors of Dengue Viral RNA-Dependent RNA Polymerase from Fragment Screening and Structure-Guided Design. Adv Exp Med Biol. 2018;1062:187-98. doi: 10.1007/978-981-10-8727-1_14
  16. Jordheim LP, Durantel D, Zoulim F, Dumontet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov. 2013;12(6):447-64. doi: 10.1038/nrd4010
  17. Eyer L, Nencka R, de Clercq E, et al. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antivir Chem Chemother. 2018;26:2040206618761299. doi: 10.1177/2040206618761299
  18. Benhamou Y, Tubiana R, Thibault V. Tenofovir disoproxil fumarate in patients with HIV and lamivudine-resistant hepatitis B virus. N Engl J Med. 2003;348(2):177-8. doi: 10.1056/NEJM200301093480218
  19. Osorio JE, Wallace D, Stinchcomb DT. A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone. Expert Rev Vaccines. 2016;15(4):497-508. doi: 10.1586/14760584.2016.1128328
  20. Whitehead SS. Development of TV003/TV005, a single dose, highly immunogenic live attenuated dengue vaccine; what makes this vaccine different from the Sanofi-Pasteur CYD™ vaccine? Expert Rev Vaccines. 2016;15(4):509-17. doi: 10.1586/14760584.2016.1115727
  21. Jordheim LP, Durantel D, Zoulim F, Dumontet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov. 2013;12(6):447-64. doi: 10.1038/nrd4010

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Major dengue virus proteins and compounds that act on them.

Download (125KB)

Copyright (c) 2023 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies