Composition of oropharyngeal microbiota in patients with COVID-19 of different pneumonia severity

Cover Page

Cite item

Full Text

Abstract

Aim. To identify features of the taxonomic composition of the oropharyngeal microbiota of COVID-19 patients with different disease severity.

Materials and methods. The study group included 156 patients hospitalized with confirmed diagnosis of COVID-19 in the clinical medical center of Yevdokimov Moscow State University of Medicine and Dentistry between April and June 2021. There were 77 patients with mild pneumonia according to CT (CT1) and 79 patients with moderate to severe pneumonia (CT2 and CT3). Oropharyngeal swabs were taken when the patient was admitted to the hospital. Total DNA was isolated from the samples, then V3–V4 regions of the 16s rRNA gene were amplified, followed by sequencing using Illumina HiSeq 2500 platform. DADA2 algorithm was used to obtain amplicon sequence variants (ASV).

Results. When comparing the microbial composition of the oropharynx of the patients with different forms of pneumonia, we have identified ASVs associated with the development of both mild and severe pneumonia outside hospital treatment. Based on the results obtained, ASVs associated with a lower degree of lung damage belong predominantly to the class of Gram-negative Firmicutes (Negativicutes), to various classes of Proteobacteria, as well as to the order Fusobacteria. In turn, ASVs associated with a greater degree of lung damage belong predominantly to Gram-positive classes of Firmicutes – Bacilli and Clostridia. While being hospitalized, patients with severe pneumonia demonstrated negative disease dynamics during treatment significantly more often.

Conclusion. We have observed differences in the taxonomic composition of the oropharyngeal microbiota in patients with different forms of pneumonia developed outside hospital treatment against COVID-19. Such differences might be due to the presumed barrier function of the oropharyngeal microbiota, which reduces the risk of virus titer increase.

About the authors

Elizaveta V. Starikova

Research Institute of Systemic Biology and Medicine

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0001-6582-210X

науч. сотр. ФБУН НИИ СБМ

Russian Federation, Moscow

Julia S. Galeeva

Research Institute of Systemic Biology and Medicine

Author for correspondence.
Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0001-6304-4607

мл. науч. сотр. ФБУН НИИ СБМ

Russian Federation, Moscow

Dmitry N. Andreev

Yevdokimov Moscow State University of Medicine and Dentistry

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0002-4007-7112

канд. мед. наук, доц., доц. каф. пропедевтики внутренних болезней и гастроэнтерологии ФГБОУ ВО «МГМСУ им. А.И. Евдокимова»

Russian Federation, Moscow

Philipp S. Sokolov

Yevdokimov Moscow State University of Medicine and Dentistry

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0003-2813-6498

врач-специалист отд-ния микробиологического анализа Клинического центра COVID-19, ст. лаборант каф. ЮНЕСКО «Здоровый образ жизни – залог успешного развития» ФГБОУ ВО «МГМСУ им. А.И. Евдокимова»

Russian Federation, Moscow

Dmitry E. Fedorov

Research Institute of Systemic Biology and Medicine

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0001-8468-7011

мл. науч. сотр. ФБУН НИИ СБМ

Russian Federation, Moscow

Aleksander I. Manolov

Research Institute of Systemic Biology and Medicine

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0003-3912-429X

науч. сотр. ФБУН НИИ СБМ

Russian Federation, Moscow

Alexander V. Pavlenko

Research Institute of Systemic Biology and Medicine

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0002-9549-0289

науч. сотр. ФБУН НИИ СБМ

Russian Federation, Moscow

Ksenia M. Klimina

Federal Scientific and Clinical Center for Physical and Chemical Medicine

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0002-5563-644X

канд. биол. наук, ст. науч. сотр. ФГБУ ФНКЦ ФХМ

Russian Federation, Moscow

Vladimir A. Veselovsky

Federal Scientific and Clinical Center for Physical and Chemical Medicine

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0002-4336-9452

мл. науч. сотр. ФГБУ ФНКЦ ФХМ

Russian Federation, Moscow

Andrew V. Zaborovsky

Yevdokimov Moscow State University of Medicine and Dentistry, Moscow

Email: olgagaleeva546@gmail.com

D. Sci. (Med.)

Russian Federation, Moscow

Vladimir V. Evdokimov

Yevdokimov Moscow State University of Medicine and Dentistry

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0001-9281-579X

д-р мед. наук, проф., нач. управления науки ФГБОУ ВО «МГМСУ им. А.И. Евдокимова»

Russian Federation, Moscow

Nikolai G. Andreev

Yevdokimov Moscow State University of Medicine and Dentistry

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0002-5136-0140

канд. мед. наук, доц., доц. каф.пропедевтики внутренних болезней и гастроэнтерологии ФГБОУ ВО «МГМСУ им. А.И. Евдокимова»

Russian Federation, Moscow

Mikhail K. Devkota

Yevdokimov Moscow State University of Medicine and Dentistry

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0002-3736-4196

врач-специалист отд-ния микробиологического анализа Клинического центра COVID-19, преподаватель каф. фармакологии ФГБОУ ВО «МГМСУ им. А.И. Евдокимова»

Russian Federation, Moscow

Aleksei K. Fomenko

Yevdokimov Moscow State University of Medicine and Dentistry

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0002-1794-7263

врач-специалист отд-ния микробиологического анализа Клинического центра COVID-19, преподаватель каф. фармакологии ФГБОУ ВО «МГМСУ им. А.И. Евдокимова»

Russian Federation, Moscow

Vadim A. Khar'kovskii

Yevdokimov Moscow State University of Medicine and Dentistry

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0001-8659-3502

врач-специалист отд-ния микробиологического анализа Клинического центра COVID-19 ФГБОУ ВО «МГМСУ им. А.И. Евдокимова»

Russian Federation, Moscow

Pavel O. Asadulin

Yevdokimov Moscow State University of Medicine and Dentistry

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0001-5236-1770

врач-специалист отд-ния микробиологического анализа Клинического центра COVID-19 ФГБОУ ВО «МГМСУ им. А.И. Евдокимова»

Russian Federation, Moscow

Sergey A. Kucher

Yevdokimov Moscow State University of Medicine and Dentistry

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0001-7981-1786

врач-специалист отд-ния микробиологического анализа Клинического центра COVID-19 ФГБОУ ВО «МГМСУ им. А.И. Евдокимова»

Russian Federation, Moscow

Aleksandra S. Cheremushkina

Yevdokimov Moscow State University of Medicine and Dentistry

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0002-1089-4322

студентка лечебного фак-та ФГБОУ ВО «МГМСУ им. А.И. Евдокимова»

Russian Federation, Moscow

Oleg O. Yanushevich

Yevdokimov Moscow State University of Medicine and Dentistry

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0002-4293-8465

акад. РАН, д-р мед. наук, проф., ректор, зав. каф. пародонтологии ФГБОУ ВО «МГМСУ им. А.И. Евдокимова»

Russian Federation, Moscow

Igor V. Maev

Yevdokimov Moscow State University of Medicine and Dentistry

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0001-6114-564X

акад. РАН, д-р мед. наук, проф., зав. каф. пропедевтики внутренних болезней и гастроэнтерологии лечебного фак-та ФГБОУ ВО «МГМСУ им. А.И. Евдокимова»

Russian Federation, Moscow

Natella I. Krikheli

Yevdokimov Moscow State University of Medicine and Dentistry

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0002-8035-0638

д-р мед. наук, проф., зав. каф. клинической стоматологии ФГБОУ ВО «МГМСУ им. А.И. Евдокимова»

Russian Federation, Moscow

Oleg V. Levchenko

Yevdokimov Moscow State University of Medicine and Dentistry

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0003-0857-9398

д-р мед. наук, проф. каф. нейрохирургии и нейрореанимации ФГБОУ ВО «МГМСУ им. А.И. Евдокимова»

Russian Federation, Moscow

Elena N. Ilina

Research Institute of Systemic Biology and Medicine

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0003-0130-5079

чл.-кор. РАН, проф. РАН, д-р биол. наук, гл. науч. сотр. ФБУН НИИ СБМ

Russian Federation, Moscow

Vadim M. Govorun

Research Institute of Systemic Biology and Medicine

Email: olgagaleeva546@gmail.com
ORCID iD: 0000-0003-0837-8764

акад. РАН, д-р биол. наук, проф., врио дир. ФБУН НИИ СБМ

Russian Federation, Moscow

References

  1. Caselli E, Fabbri C, D'Accolti M, et al. Defining the oral microbiome by whole-genome sequencing and resistome analysis: the complexity of the healthy picture. BMC Microbiol. 2020;20(1):120. doi: 10.1186/s12866-020-01801-y
  2. Pace CC, McCullough GH. The association between oral microorgansims and aspiration pneumonia in the institutionalized elderly: review and recommendations. Dysphagia. 2010;25(4):307-22. doi: 10.1007/s00455-010-9298-9
  3. Mammen MJ, Scannapieco FA, Sethi S. Oral-lung microbiome interactions in lung diseases. Periodontol 2000. 2020;83(1):234-41. doi: 10.1111/prd.12301
  4. Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581-3. doi: 10.1038/nmeth.3869
  5. Davis NM, Proctor DM, Holmes SP, et al. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6(1):226. doi: 10.1186/s40168-018-0605-2
  6. McMurdie PJ, Holmes S. Phyloseq: a bioconductor package for handling and analysis of high-throughput phylogenetic sequence data. Pac Symp Biocomput. 2012:235-46.
  7. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8
  8. Castro-Nallar E, Bendall ML, Pérez-Losada M, et al. Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls. PeerJ. 2015;3:e1140. doi: 10.7717/peerj.1140
  9. Li Q, Pu Y, Lu H, et al. Porphyromonas, Treponema, and Mogibacterium promote IL8/IFNγ/TNFα-based pro-inflammation in patients with medication-related osteonecrosis of the jaw. J Oral Microbiol. 2021;13(1). doi: 10.1080/20002297.2020.1851112
  10. Nguyen L, McCord KA, Bui DT, et al. Sialic acid-containing glycolipids mediate binding and viral entry of SARS-CoV-2. Nat Chem Biol. 2022;18(1):81-90. doi: 10.1038/s41589-021-00924-1
  11. Bouchet V, Hood DW, Li J, et al. Host-derived sialic acid is incorporated into Haemophilus influenzae lipopolysaccharide and is a major virulence factor in experimental otitis media. Proc Natl Acad Sci USA. 2003;100(15):8898-903. doi: 10.1073/pnas.1432026100
  12. Honarmand Ebrahimi K. SARS-CoV-2 spike glycoprotein-binding proteins expressed by upper respiratory tract bacteria may prevent severe viral infection. FEBS Lett. 2020;594(11):1651-60. doi: 10.1002/1873-3468.13845
  13. Nardelli C, Gentile I, Setaro M, et al. Nasopharyngeal Microbiome Signature in COVID-19 Positive Patients: Can We Definitively Get a Role to Fusobacterium periodonticum? Front Cell Infect Microbiol. 2021;11:625581. doi: 10.3389/fcimb.2021.625581
  14. Liu J, Liu S, Zhang Z, et al. Association between the nasopharyngeal microbiome and metabolome in patients with COVID-19. Synth Syst Biotechnol. 2021;6(3):135-43. doi: 10.1016/j.synbio.2021.06.002
  15. Zhang L, Fan Y, Su H, et al. Chlorogenic acid methyl ester exerts strong anti-inflammatory effects via inhibiting the COX-2/NLRP3/NF-κB pathway. Food Funct. 2018;9(12):6155-64. doi: 10.1039/c8fo01281d
  16. Brinig MM, Lepp PW, Ouverney CC, et al. Prevalence of bacteria of division TM7 in human subgingival plaque and their association with disease. Appl Environ Microbiol. 2003;69(3):1687-94. doi: 10.1128/AEM.69.3.1687-1694.2003
  17. Chipashvili O, Utter DR, Bedree JK, et al. Episymbiotic Saccharibacteria suppresses gingival inflammation and bone loss in mice through host bacterial modulation. Cell Host Microbe. 2021;29(11):1649-62.e7. doi: 10.1016/j.chom.2021.09.009
  18. He X, McLean JS, Edlund A, et al. Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. Proc Natl Acad Sci USA. 2015;112(1):244-9. doi: 10.1073/pnas.1419038112
  19. Bor B, Bedree JK, Shi W, et al. Saccharibacteria (TM7) in the Human Oral Microbiome. J Dent Res. 2019;98(5):500-9. doi: 10.1177/0022034519831671

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of the number of patients diagnosed with COVID-19 by age, gender, degree of lung injury (CT), and need for supplemental oxygen.

Download (112KB)
3. Fig. 2. Scheme of bioinformatics processing of 16s rRNA gene amplicon sequences from patient samples.

Download (178KB)
4. Fig. 3. Heat map of representation of prokaryotic genera in oropharyngeal samples of 156 patients with varying degrees of lung involvement (indicated in yellow, orange, and purple in the upper panel; CT). The colors of the heat map reflect the representation values of the corresponding bacterial genera after the CLR (centered log ratio transform) transformation.

Download (599KB)
5. Fig. 4: a – graph of the similarity of the taxonomic composition (b-diversity) of metagenomes of patients with different degrees of lung damage according to CT: CT-1 (n=77), CT-2 (n=66), CT-3 (n=13) based on NMDS for species diversity (difference metric: Bray–Curtis measure) principal component analysis; b – axonomic diversity (a-diversity) of the microbiota of patients with varying degrees of lung damage according to CT: CT-1 (n=77), CT-2 (n=66), CT-3 (n=13), calculated as an index Shannon.

Download (115KB)
6. Fig. 5. The contribution of metadata groups to the variation in the variance of the taxonomic composition of the microbiota of patient samples. Physiological indicators: gender, age. Chronic diseases: chronic diseases of the cardiovascular system, COPD, diabetes mellitus, inflammatory bowel disease. Patients' condition: the severity of pneumonia according to CT, the need for additional O2, taking antibiotics within a month before hospitalization. Dental indicators: dental status, PMA index, PHP index, KUz index.

Download (101KB)
7. Fig. 6. Analysis of the differential representation of 16s amplicons of bacteria associated with severe (CT>2, n=79) and mild (CT=1, n=77) degree of lung injury in patients. The analysis was carried out using the DeSeq2 method: a – ASV, reproducible in ≥20 iterations out of 25; b – ASV, reproducing ≥15 iterations out of 25. ASV bacteria that are associated with high lung disease in patients are shown with bars pointing to the right; with a mild degree of lung damage in patients – to the left. To the right and left of the bars is the level of statistical significance (a) calculated from the analysis for each differentially represented ASV.

Download (447KB)

Copyright (c) 2022 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies