SGLT2 inhibitors in acute decompensated heart failure, what do we know?

Cover Page

Cite item

Full Text

Abstract

The current worldwide prevalence of heart failure is growing, while its combination with cardiovascular and other conditions determines a poor prognosis in these patients. Furthermore, acute decompensated heart failure is associated with a low survival rate mostly caused by target organ damage. The effects of early administration of SGLT2 inhibitors on renal function in patients with acute decompensated heart failure are being studied to determine the possibility of improving response to treatment, as well as partial or complete recovery of renal function. The goal of the review was to synthesize currently available evidence for the use of SGLT2 inhibitors in patients with acute decompensated heart failure. A systematic search for studies published from 2018 to 2021 and their analysis was carried out in the following databases: Web of Science, Scopus, PubMed/MEDLINE.

About the authors

Anastasiya E. Lapteva

Chazov National Medical Research Center of Cardiology

Author for correspondence.
Email: anastasiyalapteva95@gmail.com
ORCID iD: 0000-0002-9260-9520

аспирант отд. заболеваний миокарда и сердечной недостаточности

Russian Federation, Moscow

Svetlana N. Nasonova

Chazov National Medical Research Center of Cardiology

Email: anastasiyalapteva95@gmail.com
ORCID iD: 0000-0002-0920-7417

канд. мед. наук, ст. науч. сотр. отд. заболеваний миокарда и сердечной недостаточности

Russian Federation, Moscow

Igor V. Zhirov

Chazov National Medical Research Center of Cardiology; Russian Medical Academy of Continuous Professional Education

Email: anastasiyalapteva95@gmail.com
ORCID iD: 0000-0002-4066-2661

д-р мед. наук, вед. науч. сотр. отд. заболеваний миокарда и сердечной недостаточности, проф. каф. кардиологии

Russian Federation, Moscow; Moscow

Sergey N. Tereshchenko

Chazov National Medical Research Center of Cardiology; Russian Medical Academy of Continuous Professional Education

Email: anastasiyalapteva95@gmail.com
ORCID iD: 0000-0001-9234-6129

д-р мед. наук, проф., рук. отд. заболеваний миокарда и сердечной недостаточности, зав. каф. кардиологии

Russian Federation, Moscow; Moscow

References

  1. Savarese G, Lund LH. Global Public Health Burden of Heart Failure. Card Fail Rev. 2017;3(1):7-11. doi: 10.15420/cfr.2016:25:2
  2. Поляков Д.С., Фомин И.В., Беленков Ю.Н., и др. Хрони- ческая сердечная недостаточность в Российской Федерации: что изменилось за 20 лет наблюдения? Результаты исследования ЭПОХА-ХСН. Кардиология. 2021;61(4):4-14 [Polyakov DS, Fomin IV, Belenkov YuN, et al. Chronic heart failure in the Russian Federation: what has changed over 20 years of follow-up? Results of the EPOCH-CHF study. Kardiologiia. 2021;61(4):4-14 (in Russian)]. doi: 10.18087/cardio.2021.4.n1628
  3. Chioncel O, Mebazaa A, Maggioni AP, et al. Acute heart failure congestion and perfusion status – impact of the clinical classification on in-hospital and long-term outcomes; insights from the ESC-EORP-HFA Heart Failure Long-Term Registry. Eur J Heart Fail. 2019;21(11):1338-52. doi: 10.1002/ejhf.1492
  4. Echouffo-Tcheugui JB, Xu H, DeVore AD, et al. Temporal trends and factors associated with diabetes mellitus among patients hospitalized with heart failure: Findings from Get With The Guidelines-Heart Failure registry. Am Heart J. 2016;182:9-20. doi: 10.1016/j.ahj.2016.07.025
  5. Fonarow GC. Diabetes medications and heart failure: recognizing the risk. Circulation. 2014;130(18):1565-7. doi: 10.1161/CIRCULATIONAHA.114.012883
  6. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599-726. doi: 10.1093/eurheartj/ehab368
  7. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117-28. doi: 10.1056/NEJMoa1504720
  8. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644-57. doi: 10.1056/NEJMoa1611925
  9. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. 2019;380(24):2295-306. doi: 10.1056/NEJMoa1811744
  10. Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347-57. doi: 10.1056/NEJMoa1812389
  11. Cannon CP, McGuire DK, Pratley R, et al. Design and baseline characteristics of the eValuation of ERTugliflozin effIcacy and Safety CardioVascular outcomes trial (VERTIS-CV). Am Heart J. 2018;206:11-23. doi: 10.1016/j.ahj.2018.08.016
  12. Cosentino F, Cannon CP, Cherney DZI, et al. Efficacy of Ertugliflozin on Heart Failure-Related Events in Patients With Type 2 Diabetes Mellitus and Established Atherosclerotic Cardiovascular Disease: Results of the VERTIS CV Trial. Circulation. 2020;142(23):2205-15. doi: 10.1161/CIRCULATIONAHA.120.050255
  13. Arnott C, Li Q, Kang A, et al. Sodium-Glucose Cotransporter 2 Inhibition for the Prevention of Cardiovascular Events in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2020;9(3):e014908. doi: 10.1161/JAHA.119.014908
  14. McMurray JJ, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995-2008. doi: 10.1056/NEJMoa1911303
  15. Nassif ME, Windsor S, Tang F, et al. Dapagliflozin effects on biomarkers, symptoms, and functional status in patients with heart failure with reduced ejection fraction: the DEFINE-HF trial. Circulation. 2019;140(18):1463-76. doi: 10.1161/CIRCULATIONAHA.119.042929
  16. Packer M, Butler J, Filippatos GS, et al. Evaluation of the effect of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality of patients with chronic heart failure and a reduced ejection fraction: rationale for and design of the EMPEROR-Reduced trial. Eur J Heart Fail. 2019;21:1270-8. doi: 10.1002/ejhf.1536
  17. Packer M, Anker SD, Butler J, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 2020;383(15):1413-24. doi: 10.1056/NEJMoa2022190
  18. Anker SD, Butler J, Filippatos G, at al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med. 2021;385(16):1451-61. doi: 10.1056/NEJMoa2107038
  19. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599-726. doi: 10.1093/eurheartj/ehab368
  20. Damman K, Beusekamp JC, Boorsma EM, et al. Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF). Eur J Heart Fail. 2020;22(4):713-22. doi: 10.1002/ejhf.1713
  21. Boorsma EM, Beusekamp JC, Ter Maaten JM, et al. Effects of empagliflozin on renal sodium and glucose handling in patients with acute heart failure. Eur J Heart Fail. 2021;23(1):68-78. doi: 10.1002/ejhf.2066
  22. Beusekamp JC, Tromp J, Boorsma EM, et al. Effects of sodium-glucose co-transporter 2 inhibition with empagliflozin on potassium handling in patients with acute heart failure. Eur J Heart Fail. 2021;23(6):1049-52. doi: 10.1002/ejhf.2197
  23. Tromp J, Ponikowski P, Salsali A, et al. Sodium-glucose co-transporter 2 inhibition in patients hospitalized for acute decompensated heart failure: rationale for and design of the EMPULSE trial. Eur J Heart Fail. 2021;23(5):826-34. doi: 10.1002/ejhf.2137
  24. Bavry AA, Bhatt DL. Empagliflozin in Patients Hospitalized for Acute Heart Failure – EMPULSE. November 14, 2021. Available at: https://www.acc.org/Latest-in-Cardiology/Clinical-Trials/2021/11/12/00/29/EMPULSE. Accessed: 06.12.2021.
  25. Szarek M, Bhatt DL, Steg PG, et al. Effect of Sotagliflozin on Total Hospitalizations in Patients With Type 2 Diabetes and Worsening Heart Failure: A Randomized Trial. Ann Intern Med. 2021;174(8):1065-72. doi: 10.7326/M21-0651
  26. Tamaki S, Yamada T, Watanabe T, et al. Effect of Empagliflozin as an Add-On Therapy on Decongestion and Renal Function in Patients With Diabetes Hospitalized for Acute Decompensated Heart Failure: A Prospective Randomized Controlled Study. Circ Heart Fail. 2021;14(3):e007048. doi: 10.1161/CIRCHEARTFAILURE.120.007048
  27. Nakagaito M, Joho S, Ushijima R, et al. Comparison of Canagliflozin, Dapagliflozin and Empagliflozin Added to Heart Failure Treatment in Decompensated Heart Failure Patients With Type 2 Diabetes Mellitus. Circ Rep. 2019;1(10):405-13. doi: 10.1253/circrep.CR-19-0070
  28. Nakagaito M, Imamura T, Joho S, et al. Efficacy of Continuing SGLT2 Inhibitors on Outcomes in Patients with Acute Decompensated Heart Failure. Int Heart J. 2021;62(4):885-90. doi: 10.1536/ihj.21-022
  29. Effects of Empagliflozin on Diuresis and Renal Function in Patients With Acute Decompensated Heart Failure (EMPAG-HF). ClinicalTrials.gov. August 7, 2019. Available at: https://clinicaltrials.gov/ct2/show/NCT04049045. Accessed: 06.12.2021.
  30. Cox ZL, Collins SP, Aaron M, et al. Efficacy and safety of dapagliflozin in acute heart failure: Rationale and design of the DICTATE-AHF trial. Am Heart J. 2021;232:116-24. doi: 10.1016/j.ahj.2020.10.071
  31. Dapagliflozin and Effect on Cardiovascular Events in Acute Heart Failure – Thrombolysis in Myocardial Infarction 68 (DAPA ACT HF-TIMI 68). ClinicalTrials.gov. April 27, 2020. Available at: https://clinicaltrials.gov/ct2/show/NCT04363697. Accessed: 06.12.2021.

Copyright (c) 2022 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies