Molecular cardiology: from decoding the genetic nature and mechanisms of the diseases development to the introduction into the clinic

Cover Page

Cite item

Full Text

Abstract

In recent decades, advances in molecular biology have led to a change in understanding the inheritance mechanisms and development of cardiological diseases of predominantly genetic origin, such as hypertrophic and dilated cardiomyopathies, familial hypercholesterolemia, etc. This knowledge made it possible to develop fundamentally new drug interventions. Programs for detecting cardiac diseases of predominantly genetic origin have been created, including genetic counseling and testing. Competence in this area is becoming a necessary part of a cardiologist's job.

About the authors

Dmitry A. Zateyshchikov

Chazov National Medical Research Center of Cardiology; City Clinical Hospital №51; Central State Medical Academy of Department of Presidential Affair

Author for correspondence.
Email: dz@bk.ru
ORCID iD: 0000-0001-7065-2045

д-р мед. наук, проф., исполнитель проекта №20-15-00353 (ГПД) лаб. функциональной геномики сердечно-сосудистых заболеваний ИЭК, зав. первичным сосудистым отд-нием, зав. каф. терапии, кардиологии и функциональной диагностики с курсом нефрологии

Russian Federation, Moscow; Moscow; Moscow

Olga O. Favorova

Chazov National Medical Research Center of Cardiology; Pirogov Russian National Research Medical University

Email: dz@bk.ru
ORCID iD: 0000-0002-5271-6698

д-р биол. наук, проф., гл. науч. сотр., зав. лаб. функциональной геномики сердечно-сосудистых заболеваний ИЭК, гл. науч. сотр. НИЛ «Медицинская геномика» НИИ трансляционной медицины

Russian Federation, Moscow; Moscow

Olga S. Chumakova

Chazov National Medical Research Center of Cardiology; Central State Medical Academy of Department of Presidential Affair

Email: dz@bk.ru
ORCID iD: 0000-0003-2373-1183

канд. мед. наук, исполнитель проекта №20-15-00353 (ГПД) лаб. функциональной геномики сердечно- сосудистых заболеваний ИЭК, доц. каф. терапии, кардиологии и функциональной диагностики с курсом нефрологии

Russian Federation, Moscow; Moscow

References

  1. Goldstein JL, Brown MS. The LDL Receptor. Arterioscler Thromb Vasc Biol. 2009;29(4):431-8. doi: 10.1161/atvbaha.108.179564
  2. Чумакова О.С. Гипертрофическая кардиомиопатия у пожилых: причины, диагностика, лечение. Терапевтический архив. 2020;92(9):63-9 [Chumakova OS. Hypertrophic cardiomyopathy in elderly: causes, diagnostic and treatment approaches. Terapevticheskii Arkhiv (Ter. Arkh.). 2020;92(9): 63-9 (in Russian)]. doi: 10.26442/00403660.2020.09.000558
  3. Чумакова О.С., Резниченко Н.Е., Волошина Н.М., и др. Верхушечная и необструктивная гипертрофическая кардиомиопатия: сравнение клинических данных и прогноза. Комплексные проблемы сердечно-сосудистых заболеваний. 2021;10(S2):182 [(in Russian)].
  4. Helms AS, Day SM. Hypertrophic cardiomyopathy: single gene disease or complex trait? Eur Heart J. 2016;37(23):1823-5. doi: 10.1093/eurheartj/ehv562
  5. Pasipoularides A. Challenges and Controversies in Hypertrophic Cardiomyopathy: Clinical, Genomic and Basic Science Perspectives. Rev Esp Cardiol (Engl Ed). 2018;71(3):132-8. doi: 10.1016/j.rec.2017.07.003
  6. Минушкина Л.О., Бражник В.А., Никитин А.Г., и др. Нарушение регуляции стабильности генома может быть ключевым механизмом развития гипертрофии левого желудочка при артериальной гипертонии. Международный журнал сердца и сосудистых заболеваний. 2016;4(9):36-47 [Minushkina LO, Brazhnik VA, Nikitin AG, et al. Impaired regulation of genome stability may be the key mechanism of left ventricular hypertrophy development in arterial hypertension. International Heart and Vascular Disease Journal. 2016;4(9):36-47 (in Russian)].
  7. Kolder IC, Michels M, Christiaans I, et al. The role of renin-angiotensin-aldosterone system polymorphisms in phenotypic expression of MYBPC3-related hypertrophic cardiomyopathy. Eur J Hum Genet. 2012;20(10):1071-7. doi: 10.1038/ejhg.2012.48
  8. Meurs KM, Kuan M. Differential methylation of CpG sites in two isoforms of myosin binding protein C, an important hypertrophic cardiomyopathy gene. Environ Mol Mutagen. 2011;52(2):161-4. doi: 10.1002/em.20596
  9. Pradeep R, Akram A, Proute MC, et al. Understanding the Genetic and Molecular Basis of Familial Hypertrophic Cardiomyopathy and the Current Trends in Gene Therapy for Its Management. Cureus. 2021;13(8):e17548. doi: 10.7759/cureus.17548
  10. Баулина Н.М., Киселев И.С., Чумакова О.С., Фаворова О.О. Гипертрофическая кардиомиопатия как олигогенное заболевание: аргументы транскриптомики. Молекулярная биология. 2020;54(6):955-67 [Baulina NM, Kiselev IS, Chumakova OS, Favorova O.O. Hypertrophic Cardiomyopathy as an Oligogenic Disease: Transcriptomic Arguments. Molecular Biology. 2020;54(6):955-67 (in Russian)]. doi: 10.31857/S002689842006002
  11. Willer CJ, Schmidt EM, Sengupta S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45(11):1274-83. doi: 10.1038/ng.2797
  12. Harper AR, Goel A, Grace C, et al. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat Genet. 2021;53(2):135-42. doi: 10.1038/s41588-020-00764-0
  13. Lopes LR, Garcia-Hernandez S, Lorenzini M, et al. Alpha-protein kinase 3 (ALPK3) truncating variants are a cause of autosomal dominant hypertrophic cardiomyopathy. Eur Heart J. 2021;42(32):3063-73. doi: 10.1093/eurheartj/ehab424
  14. Jordan E, Peterson L, Ai T, et al. Evidence-Based Assessment of Genes in Dilated Cardiomyopathy. Circulation. 2021;144(1):7-19. doi: 10.1161/circulationaha.120.053033
  15. Благова О.В., Алиева И.Н., Недоступ А.В., и др. Первичная (генетически детерминированная) дилатационная кардиомиопатия у пациента с новой мутацией в гене ламина: клинико-морфологическая диагностика и лечение. Кардиоваскулярная терапия и профилактика. 2017;16(4):76-82 [Blagova OV, Alieva IN, Nedostup AV, et al. Primary (genetically determined) dilation cardiomyopathy in a patient with novel mutation of lamin gene: clinical and morphological management. Cardiovascular Therapy and Prevention. 2017;16(4):76-82 (in Russian)]. doi: 10.15829/1728-8800-2017-4-76-82
  16. Wahbi K, Ben Yaou R, Gandjbakhch E, et al. Development and Validation of a New Risk Prediction Score for Life-Threatening Ventricular Tachyarrhythmias in Laminopathies. Circulation. 2019;140(4):293-302. doi: 10.1161/circulationaha.118.039410
  17. Magri D, Mastromarino V, Gallo G, et al. Risk Stratification in Hypertrophic Cardiomyopathy. Insights from Genetic Analysis and Cardiopulmonary Exercise Testing. J Clin Med. 2020;9(6):1636. doi: 10.3390/jcm9061636
  18. Zhang C, Zhang H, Wu G, et al. Titin-Truncating Variants Increase the Risk of Cardiovascular Death in Patients With Hypertrophic Cardiomyopathy. Can J Cardiol. 2017;33(10):1292-7. doi: 10.1016/j.cjca.2017.05.020
  19. Garcia-Giustiniani D, Arad M, Ortiz-Genga M, et al. Phenotype and prognostic correlations of the converter region mutations affecting the β myosin heavy chain. Heart. 2015;101(13):1047-53. doi: 10.1136/heartjnl-2014-307205

Copyright (c) 2022 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies