Correction of intestinal microbial composition disturbances as a potential link in complex therapy of patients with COVID-19

Cover Page

Cite item

Full Text

Abstract

The article reflects the potential for correcting intestinal microbiota disorders in the complex therapy of patients with COVID-19. It has been noted that the inclusion of dietary fiber in the diet contributes to protection against disruption of the integrity of the intestinal barrier and may limit bacterial translocation into the systemic circulation. The possibility of using psyllium (Mucofalk) is reflected, the action of which is realized both through its sorption, cytoprotective and anti-inflammatory properties in viral lesions of the gastrointestinal tract, and through stimulation of the own beneficial intestinal microbiota. The paper presents studies of the prospects for the use of probiotics, synbiotics in the complex therapy of patients with COVID-19. Detailed data are provided on the mechanisms of the positive effect of short-chain fatty acid preparations on reducing the severity of the disease in patients with COVID-19. It was noted that taking the drug Zacofalk® leads to a significant increase in its own butyrate-producing microbiota (Faecalibacterium prausnitzii) and suppression of the growth of opportunistic flora with pro-inflammatory activity. The results of a recent study are presented showing that in patients with a mild course of COVID infection with respiratory and intestinal symptoms, the administration of Zakofalk for 30 days (3 tablets per day) led to significantly faster stool normalization (by day 7), persistent normalization of the frequency and consistency of stools by the 21st day and a significantly more pronounced regression of bloating and abdominal pain, as well as a decrease in the risk of developing post-infectious irritable bowel syndrome.

About the authors

Vadim A. Akhmedov

Omsk State Medical University

Author for correspondence.
Email: v_akhmedov@mail.ru
ORCID iD: 0000-0002-7603-8481

д-р мед. наук, проф., зав. каф. медицинской реабилитации

Russian Federation, Omsk

References

  1. Baig AM. Computing the effects of SARS-CoV-2 on respiration regulatory mechanisms in COVID-19. ACS Chem Neurosci. 2020;11:2416-21. doi: 10.1021/acschemneuro.0c00349
  2. Ragab D, Salah Eldin H, Taeimah M, et al. The COVID-19 cytokine storm; what we know so far. Front Immunol. 2020;11:1446. doi: 10.3389/fimmu.2020.01446
  3. Camilleri M, Lyle BJ, Madsen KL, et al. Role for diet in normal gut barrier function: developing guidance within the framework of food-labeling regulations. Am J Physiol Gastrointest Liver Physiol. 2019;317:G17-39. doi: 10.1152/ajpgi.00063.2019
  4. Conte L, Toraldo DM. Targeting the gut-lung microbiota axis by means of a high-fibre diet and probiotics may have anti-inflammatory effects in COVID-19 infection. Ther Adv Respir Dis. 2020;14:1753466620937170. doi: 10.1177/1753466620937170
  5. Полевая Е.В., Вахитов Т.Я., Ситкин С.И. Энтеросорбционные свойства псиллиума (Мукофалька®) и возможные механизмы его действия при кишечных инфекциях. Клинические перспективы гастроэнтерологии, гепатологии. 2011;2:35-9 [Polevaya YeV, Vakhitov TYa, Sitkin SI. Enterosorbtion properties of psyllium (Mucofalk®) and its probable mechanisms at intestinal infections. Klinicheskie perspektivy gastroenterologii, gepatologii. 2011;2:35-9 (in Russian)].
  6. Ардатская М.Д., Буторова Л.И., Калашникова М.А., и др. Гастроэнтерологические симптомы у пациентов с COVID-19 легкой тяжести: возможности оптимизации антидиарейной терапии. Терапевтический архив. 2021;93(8):923-31 [Ardatskaya MD, Butorova LI, Kalashnikova MA, et al. Gastroenterological symptoms in COVID-19 patients with mild severity of the disease: opportunities to optimize antidiarrheal therapy. Terapevticheskii Arkhiv (Ter. Arkh.). 2021;93(8):923-31 (in Russian)]. doi: 10.26442/00403660.2021.08.201020
  7. Тихонова Е.П., Кузьмина Т.Ю., Миноранская Е.И., Миноранская Н.С. Опыт применения Мукофалька® в лечении сальмонеллеза. Клинические перспективы гастроэнтерологии, гепатологии. 2011;4:36-9 [Tikhonova YeP, Kuzmina TYu, Minoranskaya YeI, Minoranskaya NS. The practical issues of application of Mucofalk® in Salmonella infection. Klinicheskie perspektivy gastroenterologii, gepatologii. 2011;4:36-9 (in Russian)].
  8. Iddir M, Brito A, Dingeo G, et al. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients. 2020;12(6):1562. doi: 10.3390/nu12061562
  9. Trompette A, Gollwitzer ES, Pattaroni C, et al. Dietary Fiber Confers Protection against Flu by Shaping Ly6c(-) Patrolling Monocyte Hematopoiesis and CD8(+) T Cell Metabolism. Immunity. 2018;48:992-1005. doi: 10.1016/j.immuni.2018.04.022
  10. Alameddine J, Godefroy E, Papargyris L, et al. Faecalibacterium prausnitzii Skews Human DC to Prime IL10-Producing T Cells Through TLR2/6/JNK Signaling and IL-10, IL-27, CD39, and IDO-1 Induction. Front Immunol. 2019;10:143. doi: 10.3389/fimmu.2019.00143
  11. Zuo T, Liu Q, Zhang F, et al. Temporal landscape of human gut RNA and DNA virome in SARS-CoV-2 infection and severity. Microbiome. 2021;9(1):91. doi: 10.1186/s40168-021-01008-x
  12. Benus RF, van der Werf TS, Welling GW, et al. Association between Faecalibacterium prausnitzii and dietary fibre in colonic fermentation in healthy human subjects. Br J Nutr. 2010;104:693-700. doi: 10.1017/S0007114510001030
  13. Barbieri N, Herrera M, Salva S, et al. Lactobacillus rhamnosus CRL1505 nasal administration improves recovery of T-cell mediated immunity against pneumococcal infection in malnourished mice. Benef Microbes. 2017;8:393-405. doi: 10.3920/BM2016.0152
  14. Laursen RP, Hojsak I. Probiotics for respiratory tract infections in children attending day care centers a systematic review. Eur J Pediatr. 2018;177:979-94. doi: 10.1007/s00431-018-3167-1
  15. Xia Y, Cao J, Wang M, et al. Effects of Lactococcus lactis subsp. lactis JCM5805 on colonization dynamics of gut microbiota and regulation of immunity in early ontogenetic stages of tilapia. Fish Shellfish Immunol. 2019;86:53-63. doi: 10.1016/j.fsi.2018.11.022
  16. Yasui H, Kiyoshima J, Hori T, et al. Protection against influenza virus infection of mice fed Bifidobacterium breve YIT4064. Clin Diagn Lab Immunol. 1999;6:186-92. doi: 10.1128/CDLI.6.2.186-192.1999
  17. Su M, Jia Y, Li Y, et al. Probiotics for the prevention of ventilator-associated pneumonia: A meta-analysis of randomized controlled trials. Respir Care. 2020;65:673-85. doi: 10.4187/respcare.07097
  18. Zhang Q, Yue S, Wang W, et al. Potential Role of Gut Microbiota in Traditional Chinese Medicine against COVID-19. Am J Chin Med. 2021;49(4):785-803. doi: 10.1142/S0192415X21500373
  19. Han SK, Shin YJ, Lee DY, et al. Lactobacillus rhamnosus HDB1258 modulates gut microbiota-mediated immune response in mice with or without lipopolysaccharide-induced systemic inflammation. BMC Microbiol. 2021;21:146. doi: 10.1186/s12866-021-02192-4
  20. Al Kassaa I, Hober D, Hamze M, et al. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicrob Proteins. 2014;6:177-85. doi: 10.1007/s12602-014-9162-6
  21. Baindara P, Chakraborty R, Holliday ZM, et al. Oral probiotics in coronavirus disease 2019: Connecting the gut-lung axis to viral pathogenesis, inflammation, secondary infection and clinical trials. New Microbes New Infect. 2021;40:100837.
  22. Starosila D, Rybalko S, Varbanetz L, et al. Anti-influenza activity of a Bacillus subtilis probiotic strain. Antimicrob Agents Chemother. 2017;61:e00539-17. doi: 10.1128/AAC.00539-17
  23. Zeng J, Wang CT, Zhang FS, et al. Effect of probiotics on the incidence of ventilator-associated pneumonia in critically ill patients: A randomized controlled multicenter trial. Intensive Care Med. 2016;42:1018-28. doi: 10.1007/s00134-016-4303-x
  24. Morrow LE, Kollef MH, Casale TB. Probiotic prophylaxis of ventilator-associated pneumonia: A blinded, randomized, controlled trial. Am J Respir Crit Care Med. 2010;182:1058-64. doi: 10.1164/rccm.200912-1853OC
  25. Jung YJ, Lee YT, Ngo VL, et al. Heat-killed Lactobacillus casei confers broad protection against influenza A virus primary infection and develops heterosubtypic immunity against future secondary infection. Sci Rep. 2017;7:17360. doi: 10.1038/s41598-017-17487-8
  26. Bidossi A, De Grandi R, Toscano M, et al. Probiotics Streptococcus salivarius 24SMB and Streptococcus oralis 89a interfere with biofilm formation of pathogens of the upper respiratory tract. BMC Infect Dis. 2018;18:653. doi: 10.1186/s12879-018-3576-9
  27. Di Pierro F. A possible probiotic (S. salivarius K12) approach to improve oral and lung microbiotas and raise defenses against SARS-CoV-2. Minerva Med. 2020;111:281-3. doi: 10.23736/S0026-4806.20.06570-2
  28. Bottari B, Castellone V, Neviani E. Probiotics and COVID-19. Int J Food Sci Nutr. 2021;72:293-9. doi: 10.1080/09637486.2020.1807475
  29. Kumar R, Seo BJ, Mun MR, et al. Putative probiotic Lactobacillus spp. from porcine gastrointestinal tract inhibit transmissible gastroenteritis coronavirus and enteric bacterial pathogens. Trop Anim Health Prod. 2010;42:1855-60. doi: 10.1007/s11250-010-9648-5
  30. Chai W, Burwinkel M, Wang Z, et al. Antiviral effects of a probiotic Enterococcus faecium strain against transmissible gastroenteritis coronavirus. Arch Virol. 2013;158:799-807. doi: 10.1007/s00705-012-1543-0
  31. Liu YS, Liu Q, Jiang YL, et al. Surface-displayed porcine IFN-lambda3 in Lactobacillus plantarum inhibits porcine enteric coronavirus infection of porcine intestinal epithelial cells. J Microbiol Biotechnol. 2020;30:515-25. doi: 10.4014/jmb.1909.09041
  32. Mak JWY, Chan FKL, Ng SC. Probiotics and COVID-19: one size does not fit all. Lancet Gastroenterol Hepatol. 2020;5(7):644-5. doi: 10.1016/S2468-1253(20)30122-9
  33. Esaiassen E, Cavanagh P, Hjerde E, et al. Bifidobacterium longum subspecies infantis bacteremia in 3 extremely preterm infants receiving probiotics. Emerg Infect Dis. 2016;22:1664-6. doi: 10.3201/eid2209.160033
  34. Alataby H, Atemnkeng F, Bains SS, et al. A COVID-19 case complicated by Candida dubliniensis and Klebsiella pneumoniae-carbapenem-resistant Enterobacteriaceae. J Med Cases. 2020;1:403-6. doi: 10.14740/jmc3588
  35. Ceccarelli G, Borrazzo C, Pinacchio C, et al. Oral bacteriotherapy in patients with COVID-19: A retrospective cohort study. Front Nutr. 2020;7:613928. doi: 10.3389/fnut.2020.613928
  36. d’Ettorre G, Ceccarelli G, Marazzato M, et al. Challenges in the management of SARS-CoV2 Infection: The role of oral bacteriotherapy as complementary therapeutic strategy to avoid the progression of COVID-19. Front Med. 2020;7:389. doi: 10.3389/fmed.2020.00389
  37. Son SJ, Koh JH, Park MR, et al. Effect of the Lactobacillus rhamnosus strain GG and tagatose as a synbiotic combination in a dextran sulfate sodium-induced colitis murine model. J Dairy Sci. 2019;102:2844-53. doi: 10.3168/jds.2018-15013
  38. Fuhren J, Schwalbe M, Rösch C, et al. Dietary inulin increases Lactiplantibacillus plantarum strain Lp900 persistence in rats depending on the dietary-calcium level. Appl Environ Microbiol. 2021;87:e00122-21. doi: 10.1128/AEM.00122-21
  39. Shinde T, Vemuri R, Shastri S, et al. Modulating the Microbiome and Immune Responses Using Whole Plant Fibre in Synbiotic Combination with Fibre-Digesting Probiotic Attenuates Chronic Colonic Inflammation in Spontaneous Colitic Mice Model of IBD. Nutrients. 2020;12:2380. doi: 10.3390/nu12082380
  40. Stadlbauer V, Horvath A, Komarova I, et al. Dysbiosis in early sepsis can be modulated by a multispecies probiotic: A randomised controlled pilot trial. Benef Microbes. 2019;10:265-78. doi: 10.3920/BM2018.0067
  41. Moser AM, Spindelboeck W, Halwachs B, et al. Effects of an oral synbiotic on the gastrointestinal immune system and microbiota in patients with diarrhea-predominant irritable bowel syndrome. Eur J Nutr. 2019;58:2767-78. doi: 10.1007/s00394-018-1826-7
  42. Chen J, Vitetta LJ. Modulation of Gut Microbiota for the Prevention and Treatment of COVID-19. Clin Med. 2021;10(13):2903. doi: 10.3390/jcm10132903
  43. Archer DL, Kramer DC. The Use of Microbial Accessible and Fermentable Carbohydrates and/or Butyrate as Supportive Treatment for Patients With Coronavirus SARS-CoV-2 Infection. Front Med. 2020;7:292. doi: 10.3389/fmed.2020.00292
  44. Imhann F, Vich Vila A, Bonder MJ, et al. The influence of proton pump inhibitors and other commonly used medication on the gut microbiota. Gut Microbes. 2017;8:351-8. doi: 10.1080/19490976.2017.1284732
  45. Chen J, Hall S, Vitetta L. Altered gut microbial metabolites could mediate the effects of risk factors in Covid-19. Rev Med Virol. 2021;31(5):1-13. doi: 10.1002/rmv.2211
  46. Luu M, Weigand K, Wedi F, et al. Regulation of the effector function of CD8(+) T cells by gut microbiota-derived metabolite butyrate. Sci Rep. 2018;8:14430. doi: 10.1002/rmv.2211
  47. Takahashi Y, Hayakawa A, Sano R, et al. Histone deacetylase inhibitors suppress ACE2 and ABO simultaneously, suggesting a preventive potential against COVID-19. Sci Rep. 2021;11:3379. doi: 10.1038/s41598-021-82970-2
  48. Chemudupati M, Kenney AD, Smith AC, et al. Butyrate Reprograms Expression of Specific Interferon-Stimulated Genes. J Virol. 2020;94(16):e00326-20. doi: 10.1128/JVI.00326-20
  49. Гриневич В.Б., Кравчук Ю.А., Педь В.И., и др. Ведение пациентов с заболеваниями органов пищеварения в период пандемии COVID-19. Клинические рекомендации Научного общества гастроэнтерологов России. Экспериментальная и клиническая гастроэнтерология. 2020;179(7):4-51 [Grinevich VB, Kravchuk YuA, Ped VI, et al. Management of patients with digestive diseases during the COVID-19 pandemic: Clinical Practice Guidelines by the Gastroenterological Scientific Society of Russia. Experimental and Clinical Gastroenterology. 2020;179(7):4-51 (in Russian)]. doi: 10.31146/1682-8658-ecg-179-7-4-51
  50. Бахарев С.Д., Бауло Е.В., Быкова С.В., и др. COVID-19 и тонкая кишка. Терапевтический архив. 2021;93(3):343-7 [Bakharev SD, Baulo EV, Bykova SV, et al. COVID-19 and the small intestine. Terapevticheskii Arkhiv (Ter. Arkh.). 2021;93(3):343-7 (in Russian)]. doi: 10.26442/00403660.2021.03.20066

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Adsorption capacity of various enterosorbents [6].

Download (100KB)
3. Fig. 2. Potential role of butyrate in the treatment of COVID-19

Download (317KB)

Copyright (c) 2022 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».