Food intolerances and the small intestine

Cover Page

Cite item

Full Text

Abstract

The article presents an analysis of the literature on food intolerance (FS) associated with the presence in the diet of fermentable oligodimosaccharides and polyols FODMAP (fermentable oligosaccharides, disaccharides, monosaccharides and polyols), histamine and food additives. The relationship between FS and insufficient activity of enzymes of the small intestine mucosa, in particular, in patients with irritable bowel syndrome, is discussed. FS often noted in them forces them to strictly adhere to the elimination diet and significantly impair the quality of life due to dissatisfaction with the results of treatment. Analysis of the literature has confirmed in many patients with irritable bowel syndrome an etiotropic relationship with poor food tolerance and dictates the need for randomized studies to further study the pathogenetic mechanisms of increasing food tolerance under the influence of cytoprotective therapy.

About the authors

Asfold I. Parfenov

Loginov Moscow Clinical Scientific Center

Author for correspondence.
Email: asfold@mail.ru
ORCID iD: 0000-0002-9782-4860

д-р мед. наук, проф., зав. отд. патологии кишечника

Russian Federation, Moscow

References

  1. Lomer MC. Review article: The aetiology, diagnosis, mechanisms and clinical evidence for food intolerance. Aliment Pharmacol Ther. 2015;41:262-75. doi: 10.1111/apt.13041
  2. Ногаллер А.М. Пищевая аллергия. М.: Медицина, 1983 [Nogaller AM. Pishchevaia allergiia. Moscow: Medicina, 1983 (in Russian)].
  3. Лусс Л.В. Пищевая аллергия и пищевая непереносимость, терминология, классификация, проблемы диагностики и терапии. М., 2005 [Luss LV. Pishchevaia allergiia i pishchevaia neperenosimost', terminologiia, klassifikatsiia, problemy diagnostiki i terapii. Moscow, 2005 (in Russian)].
  4. Turnbull JL, Adams HN, Gorard DA. Review article: the diagnosis and management of food allergy and food intolerances. Aliment Pharmacol Ther. 2015;41:3-25. doi: 10.1111/apt.12984
  5. Reese I, Ballmer-Weber B, Beyer K, et al. German guideline for the management of adverse reactions to ingested histamine. Allergo J Int. 2017;26:72-9. doi: 10.1007/s40629-017-0011-5
  6. Tuck CJ, Biesiekierski JR, Schmid-Grendelmeie P, Pohl D. Food intolerances. Nutrients. 2019;11:1684. doi: 10.3390/nu11071684
  7. Varjú P, Farkas N, Hegyi P, et al. Low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet improves symptoms in adults suffering from irritable bowel syndrome (IBS) compared to standard IBS diet: a meta-analysis of clinical studies. PLoS ONE. 2017;12:e0182942. doi: 10.1371/journal.pone.0182942
  8. Парфенов А.И., Ахмадуллина О.В., Сабельникова Е.А., и др. Дисахаридазная недостаточность и функциональные заболевания кишечника. Терапевтический архив. 2017;89(4):45-52 [Parfenov AI, Ahmadullina OV, Sabelnikova EA, et al. Disaccharidase deficiency and functional bowel disease. Terapevticheskii Arkhiv (Ter. Arkh.). 2017;89(4):45-52 (in Russian)]. doi: 10.17116/terarkh201789445-52
  9. Парфенов А.И. Энтеропатия с нарушением мембранного пищеварения. М.: Медконгресс, 2019 [Parfenov AI. Enteropatiia s narusheniem membrannogo pishchevareniia. Moscow: Medkongress, 2019 (in Russian)].
  10. Cohen SA. The clinical consequences of sucrase-isomaltase deficiency. Mol Cell Pediatr. 2016;3:5. doi: 10.1186/s40348-015-0028-0
  11. Уголев А.М. Эволюция пищеварения и и принципы эволюции функций. Л.: Наука, 1985 [Ugolev AM. Evoliutsiia pishchevareniia i i printsipy evoliutsii funktsii. Leningrad: Science, 1985 (in Russian)].
  12. Weijers HA, van de Kamer JH, Mossel DA, Dicke WK. Diarrhoea caused by deficiency of sugar-splitting enzymes. Lancet. 1960;2:296-7.
  13. Gudmand-Hoyer E, Krasilnikoff PA. The effect of sucrose malabsorption on the growth pattern in children. Scand J Gastroenterol. 1977;12:103-7.
  14. Canani RB, Pezzella V, Amoroso A, et al. Diagnosing and treating intolerance to carbohydrates in children. Nutrients. 2016;8:157. doi: 10.3390/nu8030157
  15. Henström M, Diekmann L, Bonfiglio F, et al. Functional variants in the sucrase–isomaltase gene associate with increased risk of irritable bowel syndrome. Gut. 2016;67:263-70. doi: 10.1136/gutjnl-2016-312456
  16. Парфенов А.И., Белостоцкий Н.И., Дбар С.Р., и др. Энтеропатия с нарушением мембранного пищеварения. Эффективная фармакотерапия. Гастроэнтерология. 2018;16:20-7 [Parfenov AI, Belostotsky NI, Dbar SR, et al. Enteropathy with disorder of membrane digestion. Effective pharmacotherapy. Gastroenterology. 2018;16:20-7 (in Russian)].
  17. Kim SB, Calmet FH, Garrido J, et al. Sucrase-isomaltase deficiency as a potential masquerader in irritable bowel syndrome. Dig Dis Sci. 2020;65:534-40. doi: 10.1007/s10620-019-05780-7
  18. Cohen SA. Disaccharidase activity in children undergoing esophagogastroduodenoscopy. Presented: North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. Washington, A536, 2015;25.
  19. Chiruvella V, Cheema A, Arshad H, et al. Sucrase-isomaltase deficiency ausing persistent bloating and diarrhea in an adult female. Cureus. 2021;13(4):e14349. doi: 10.7759/cureus.14349
  20. Tsukahara T, Kishino E, Inoue R, et al. Correlation between villous height and the disaccharidase activity in the small intestine of piglets from nursing to growing. Anim Sci J. 2013;84:54-9.
  21. Lebwohl B, Murray JA, Rubio-Tapia A, et al. Predictors of persistent villous atrophy in coeliac disease: a population-based study. Aliment Pharmacol Ther. 2014;39:488-95. doi: 10.1111/j.1740-0929.2012.01039
  22. Парфенов А.И. Ахмадуллина О.В., Белостоцкий Н.И., и др. Активность карбогидраз как маркер восстановления слизистой оболочки тонкой кишки у больных целиакией. Терапевтический архив. 2015;87(2):24-9 [Parfenov AI, Akhmadullina OV, Belostotsky NI, et al. Carbohydrase activities may serve as a marker for small intestinal mucosal recovery in patients with celiac disease. Terapevticheskii Arkhiv (Ter. Arkh.). 2015;87(2):24-9 (in Russian)]. doi: 10.17116/terarkh201587224-29
  23. Jung K, Ahn K, Chae C. Decreased activity of brush border membrane-bound digestive enzymes in small intestines from pigs experimentally infected with porcine epidemic diarrhea virus. Res Vet Sci. 2006;81:310-5. doi: 10.1016/j.rvsc.2006.03.00
  24. Chumpitazi BP, Robayo-Torres CC, Tsai CM, et al. Yield of prospective disaccharidase testing in children with recurrent abdominal pain. Gastroenterology. 2013;144(5 Suppl 1):S401-2.
  25. Altenbach SB, Vensel WH, Dupont FM. The spectrum of low molecular weight alpha-amylase/protease inhibitor genes expressed in the US bread wheat cultivar Butte 86. BMC Res Notes. 2011;4:242. doi: 10.1186/1756-0500-4-242
  26. Парфенов А.И. Новые горизонты изучения чувствительности к глютену. Терапевтический архив. 2013;85(2):4-7 [Parfenov AI. New horizons of gluten sensitivity studies. Terapevticheskii Arkhiv (Ter. Arkh.). 2013;85(2):4-7 (in Russian)].
  27. Di Sabatino A, Volta U, Salvatore C, et al. Small amounts of gluten in subjects with suspected nonceliac gluten sensitivity: a randomized, double-blind, placebo-controlled, cross-over trial. Clin Gastroenterol Hepatol. 2015;13:1604-12.e3. doi: 10.1016/j.cgh.2015.01.029
  28. Pozo-Rubio T, Olivares M, Nova E, et al. Immune development and intestinal microbiota in celiac disease. Clin Dev Immunol. 2012;2012:654143. doi: 10.1155/2012/654143
  29. Junker Y, Zeissig S, Kim SJ, et al. Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J Exp Med. 2012;209:2395-408. doi: 10.1084/jem.20102660
  30. Catassi C, Elli L, Bonaz B, et al. Diagnosis of non-celiac gluten sensitivity (NCGS): the Salerno experts’ criteria. Nutrients. 2015;7:4966-77. doi: 10.3390/nu7064966
  31. EFSA Panel on Biological Hazards (BIOHAZ). Scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA J. 2011;9:1-93.
  32. Schnedl WJ, Lackner S, Enko D, et al. Evaluation of symptoms and symptom combinations in histamine intolerance. Intest Res. 2019;17:427-33. doi: 10.5217/ir.2018.00152
  33. Comas-Basté O, Latorre-Moratalla ML, Bernacchia R, et al. New approach for the diagnosis of histamine intolerance based on the determination of histamine and methylhistamine in urine. J Pharm Biomed Anal. 2017;145:379-85. doi: 10.1016/j.jpba.2017.06.029
  34. Gludovacz E, Maresch D, De Carvalho LL, et al. Oligomannosidic glycansat Asn-110 are essential for secretion of human diamine oxidase. J Biol Chem. 2018;293:1070-87. doi: 10.1074/jbc.M117.814244
  35. Boehm T, Reiter B, Ristl R, et al. Massive release of the histamine-degrading enzyme diamine oxidase during severe anaphylaxis in mastocytosis patients. Allergy Eur J Clin Immunol. 2019;74:583-93. doi: 10.1111/all.13663
  36. Comas-Basté O, Latorre-Moratalla ML, Sánchez-Pérez S, et al. Histamine and other biogenic amines in food. From scombroid poisoning to histamine intolerance. In: Biogenic Amines; Proestos, C., Ed.; IntechOpen. London, 2019.
  37. Visciano P, Schirone M, Tofalo R, Suzzi G. Histamine poisoning and control measures in fish and fishery products. Front Microbiol. 2014;5:500. doi: 10.3389/fmicb.2014.00500
  38. FAO (Food and Agriculture Organization of the United Nations); WHO (World Health Organization). Histamine in Salmonids. Joint FAO/WHO Literature Review; World Health Organization: Geneva, Switzerland, 2018.
  39. Latorre-Moratalla ML, Comas-Basté O, Bover-Cid S, Vidal-Carou MC. Tyramine and histamine risk assessment related to consumption of dry fermented sausages by the Spanish population. Food Chem Toxicol. 2017;99:78-85. doi: 10.1016/j.fct.2016.11.011
  40. Izquierdo-Casas J, Comas-Basté O, Latorre-Moratalla ML, et al. Low serum diamine oxidase (DAO) activity levels in patients with migraine. J Physiol Biochem. 2018;74:93-9. doi: 10.1007/s13105-017-0571-3
  41. Enko D, Meinitzer A, Mangge H, et al. Concomitant prevalence of low serum diamine oxidase activity and carbohydrate malabsorption. Can J Gastroenterol Hepatol. 2016;1-4. doi: 10.1155/2016/4893501
  42. Schnedl WJ, Enko D. Considering histamine in functional gastointestinal disorders. Crit Rev Food Sci Nutr. 2020;1-8. doi: 10.1080/10408398.2020.1791049
  43. Griauzdaite K, Maselis K, Žvirbliene A, et al. Associations between migraine, celiac disease, non-celiac gluten sensitivity and activity of diamine oxidase. Med Hypotheses. 2020;142:109738. doi: 10.1016/j.mehy.2020.109738
  44. Honzawa Y, Nakase H, Matsuura M, Chiba T. Clinical significance of serum diamine oxidase activity in inflammatory bowel disease: importance of evaluation of small intestinal permeability. Inflamm Bowel Dis. 2011;17:23-5. doi: 10.1002/ibd.21588
  45. Tavladoraki P, Cona A, Angelini R. Copper-containing amine oxidases and FAD-dependent polyamine oxidases are key players in plant tissue differentiation and organ development. Front Plant Sci. 2016;7:824. doi: 10.3389/fpls.2016.00824
  46. Sánchez-Pérez S, Comas-Basté O, Rabell-González J, et al. Biogenic amines in plant-origin foods: are they frequently underestimated in low-histamine diets? Foods. 2018;7:205. doi: 10.3390/foods7120205
  47. Martin ISM, Brachero S, Vilar EG. Histamine intolerance and dietary management: a complete review. Allergol Immunopathol. 2016;44:475-83. doi: 10.1016/j.aller.2016.04.015
  48. Parker AM, Watson RR. Lactose intolerance in nutrients in dairy and their implications for health and disease. Amsterdam: Elsevier, 2017; p. 205-11.
  49. Kettner L, Seitl I, Fischer L. Evaluation of porcine diamine oxidase for the conversion of histamine in food-relevant amounts. J Food Sci. 2020;85:843-52. doi: 10.1111/1750-3841.15069
  50. Comas-Basté O, Latorre-Moratalla ML, Rabell-González J, et al. Lyophilised legume sprouts as a functional ingredient for diamine oxidase enzyme su pplementation in histamine intolerance. LWT Food Sci Technol. 2020;125:109201. doi: 10.1016/j.lwt.2020.109201
  51. Manzotti G, Breda D, Di Gioacchino M, Burastero SE. Serum diamine oxidase activity in patients with histamine intolerance. Int J Immunopathol Pharmacol. 2016;29:105-11. doi: 10.1177/0394632015617170
  52. Schnedl WJ, Schenk M, Lackner S, et al. Diamine oxidase supplementation improves symptoms in patients with histamine intolerance. Food Sci Biotechnol. 2019;28:1779-84. doi: 10.1007/s10068-019-00627-3
  53. Young E, Patel S, Stoneham M, et al. The prevalence of reaction to food additives in a survey population. J R Coll Phys Lond. 1987;21:241-24769.
  54. Barrett JS, Gibson PR. Fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs) and nonallergic food intolerance: FODMAPs or food chemicals? Therap Adv Gastroenterol. 2012;5:261-8. doi: 10.1177/1756283X11436241
  55. Bhattacharyya S, Dudeja PK, Tobacman JK. Tumor necrosis factor α-induced inflammation is increased but apoptosis is inhibited by common food additive carrageenan. J Biol Chem. 2010;285:39511-22. doi: 10.1074/jbc.M110.159681
  56. Martino JV, Van Limbergen J, Cahill LE. The role of carrageenan and carboxymethylcellulose in the development of intestinal inflammation. Front Pediatr. 2017;5:96. doi: 10.3389/fped.2017.00096
  57. Nickerson KP, Homer CR, Kessler SP, et al. The dietary polysaccharide maltodextrin promotes Salmonella survival and mucosal colonization in mice. PLoS ONE. 2014;9:e101789. doi: 10.1371/journal.pone.0101789
  58. Nickerson KP, McDonald C. Crohn’s disease-associated adherent-invasive escherichia coli adhesion is enhanced by exposure to the ubiquitous dietary polysaccharide maltodextrin. PLoS ONE. 2012;7. doi: 10.1371/journal.pone.0052132
  59. Levine A, Wine E, Assa A, et al. Crohn’s disease exclusion diet plus partial enteral nutrition induces sustained remission in a randomized controlled trial. Gastroenterology. 2019;157:440-50.e8. doi: 10.1053/j.gastro.2019.04.021
  60. Stephen AM, Champ MMJ, Cloran SJ, et al. Dietary fibre in Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr Res Rev. 2017;30:149-90. doi: 10.1017/S095442241700004X
  61. Martinez RCR, Bedani R, Saad SMI. Scientific evidence for health effects attributed to the consumption of probiotics and prebiotics: an update for current perspectives and future challenges. Br J Nutr. 2015;114:1993-2015. doi: 10.1017/S0007114515003864
  62. Chassaing B, Koren O, Goodrich JK, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519:92-9. doi: 10.1038/nature14232
  63. Tan J, Janac B, Kaakoush NO, et al. Impact of the food additive titanium dioxide (E171) on gut microbiota-host interaction. Front Nutr. 2019;6. doi: 10.3389/fnut.2019.00057
  64. Swain A, Soutter V, Loblay R. Elimination Diet. Handbook; allergy unit Royal Prince Alfred Hospital; Allergy Unit, Royal Prince Alfred Hospital. Sydney, 2009.
  65. Holton KF, Taren DL, Thomson CA, et al. The effect of dietary glutamate on fibromyalgia and irritable bowel symptoms. Clin Exp Rheumatol. 2012;30:10-7.
  66. Chassaing B, Van de Wiele T, De Bodt J, et al. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut. 2017;66:1414-27. doi: 10.1136/gutjnl-2016-313099
  67. Abegunde AT, Muhammad BH, Bhatti O, Ali T. Environmental risk factors for inflammatory bowel diseases: evidence based literature review. World J Gastroenterol. 2016;22:6296-317. doi: 10.3748/wjg.v22.i27.6296
  68. Dahlqvist A. Specificity of the human intestinal disaccharidases and implications for hereditary disaccharide intolerance. J Clin Invest. 1962;41:3-8.
  69. Trinder P. Depermination of glucosa in blood using glucosa oxidase with an alternative oxigen reception. J Ann Clin Biochem. 1969;6:24-7.
  70. Puntis J, Zamvar V. Congenital sucrase–isomaltase deficiency: diagnostic challenges and response to enzyme replacement therapy. Arch Dis Child. 2015;100:869-71. doi: 10.1136/archdischild-2015-308388
  71. Rana SV, Bhasin DK, Katyal R, Singh K. Comparison of duodenal and jejunal disaccharidase levels in patients with non ulcer dyspepsia. Trop Gastroenterol. 2001;22:135-6.
  72. Yao CK, Tuck CJ, Barrett JS, et al. Poor reproducibility of breath hydrogen testing: implications for its application in functional bowel disorders. U Eur Gastroenterol J. 2017;5:284-92. doi: 10.1177/2050640616657978
  73. Энтеропатия с нарушением мембранного пищеварения. Методические рекомендации. Рекомендованы экспертным советом по науке ДЗМ г. Москвы 18.05.21 [Enteropatiia s narusheniem membrannogo pishchevareniia. Metodicheskie rekomendatsii. Rekomendovany ekspertnym sovetom po nauke DZM g. Moskvy 18.05.21 (in Russian)].
  74. Yao CK, Gibson PR, Shepherd SJ. Design of clinical trials evaluating dietary interventions in patients with functional gastrointestinal disorders. Am J Gastroenterol. 2013;108:748-58. doi: 10.1038/ajg.2013.77
  75. Bennet SM, Böhn L, Störsrud S, et al. Multivariate modelling of faecal bacterial profiles of patients with IBS predicts responsiveness to a diet low in FODMAPs. Gut. 2017;67:872-81. doi: 10.1136/gutjnl-2016-313128
  76. Rossi M, Aggio R, Staudacher HM, et al. Clin Gastroenterol Hepatol. 2018;16(3):385-91.e1. doi: 10.1016/j.cgh.2017.09.055
  77. McIntosh K, Reed DE, Schneider T, et al. FODMAPs alter symptoms and the metabolome of patients with IBS: a randomised controlled trial. Gut. 2016;66:1241-51. doi: 10.1136/gutjnl-2015-311339
  78. Halmos EP, Power VA, Shepherd SJ, et al. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology. 2014;146:67-75. doi: 10.1053/j.gastro.2013.09.046
  79. Schumann D, Klose P, Lauche R, et al. Low FODMAP diet in the treatment of irritable bowel syndrome: a systematic review and meta-analysis. Nutrition. 2018;45:24-31. doi: 10.1016/j.nut.2017.07.00
  80. Staudacher HM, Lomer MCE, Farquharson FM, et al. Diet low in FODMAPs reduces symptoms in patients with irritable bowel syndrome and probiotic restores bifidobacterium species: a randomized controlled trial. Gastroenterology. 2017;153:936-47. doi: 10.1053/j.gastro.2017.06.010
  81. Staudacher HM, Kurien M, Whelan K. Nutritional implications of dietary interventions for managing gastrointestinal disorders. Curr Opin Gastroenterol. 2018;34:105-11. doi: 10.1097/MOG.0000000000000421
  82. Masuy I, Van Oudenhove L, Tack J, Biesiekierski JR. Effect of intragastric FODMAP infusion on upper gastrointestinal motility, gastrointestinal, and psychological symptoms in irritable bowel syndrome vs healthy controls. Neurogastroenterol Motil. 2018;30:e13167. doi: 10.1111/nmo.13167
  83. Murray K, Wilkinson-Smith V, Hoad C, et al. Differential effects of FODMAPs (Fermentable Oligo-, Di-, Mono-Saccharides and Polyols) on small and large intestinal contents in healthy subjects shown by MRI. Am J Gastroenterol. 2013;109:110-9. doi: 10.1038/ajg.2013.386
  84. Major G, Pritchard S, Murray K, et al. Colon hypersensitivity to distension, rather than excessive gas production, produces carbohydrate-related symptoms in individuals with irritable bowel syndrome. Gastroenterology. 2017;152:124-33. doi: 10.1053/j.gastro.2016.09.062
  85. Drossman DA. Functional gastrointestinal disorders: history, pathophysiology, clinical features, and Rome IV. Gastroenterology. 2016;150:1262-79. doi: 10.1053/j.gastro.2016.02.032
  86. Whelan K, Martin L, Staudacher H, Lomer M. The low FODMAP diet in the management of irritable bowel syndrome: an evidence-based review of FODMAP restriction, reintroduction and personalisation in clinical practice. J Hum Nutr Diet. 2018;31:239-55. doi: 10.1111/jhn.12530
  87. Harms HK, Bertele-Harms RM, Bruer-Kleis D. Enzyme-substitution therapy with the yeast Saccharomyces cerevisiae in congenital sucrase-isomaltase deficiency. N Engl J Med. 1987;316:1306-9. doi: 10.1056/NEJM198705213162104
  88. Парфенов А.И., Ахмадуллина О.В., Белостоцкий Н.И., и др. Энтеропатия с нарушением мембранного пищеварения и перспективы цитопротективной терапии. Терапевтический архив. 2021;93(2):129-37 [Parfenov AI, Akhmadullina OV, Belostotsky NI, et al. Enteropathy with impaired membrane digestion and the prospects for cytoprotective therapy. Terapevticheskii Arkhiv (Ter. Arkh.). 2021;93(2):129-37 (in Russian)]. doi: 10.26442/00403660.2021.02.200602
  89. Arakawa T, Kobayashi K, Yoshikawa T, et al. Rebamipide: overview of its mechanisms of action and efficacy in mucosal protection and ulcer healing. Dig Dis Sci. 1998;43:5S-13S.
  90. Tarnawski A, Arakawa T, Kobayashi K. Rebamipide treatment activates epidermal growth factor and its receptor expression in normal and ulcerated gastric mucosa in rats: one mechanism for its ulcer healing action? Dig Dis Sci. 1998;43:90S-8S.
  91. Tarnawski AS, Chai J, Pai R, Chiou SK. Rebamipide activates gene encoding angiogenic growth factors and COX2 and stimulates angiogenesis: a key to its ulcer healing action? Dig Dis Sci. 2004;49(2):202-9. doi: 10.1023/b:ddas.0000017439.60943.5c
  92. Маев И.В., Казюлин А.Н. Новые возможности профилактики рака желудка. Терапевтический архив. 2017;89(4):101-9 [Maev IV, Kazyulin AN. New possibilities for the prevention of stomach cancer. Terapevticheskii Arkhiv (Ter. Arkh.). 2017;89(4):101-9 (in Russian)]. DOI:10.171 16/terarkh2017894101-109
  93. Makiyama K, Takeshima F, Kawasaki H, Zea-Iriarte WL. Antiinflammatory effect of rebamipide enema on proctitis type ulcerative colitis: a novel therapeutic alternative. Am J Gastroenterol. 2000;95:1838-9. doi: 10.1111/j.1572-0241.2000.02154.x
  94. Urashima H, Okamoto T, Takeji Y, et al. Rebamipide increases the amount of mucin-like substances on the conjunctiva and cornea in the N-acetylcysteine-treated in vivo model. Cornea. 2004;23:613-9. doi: 10.1097/01.ico.0000126436.25751.f

Copyright (c) 2022 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies