Исследование капельно-ручейковой конденсации методом градиентной теплометрии

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

В изучении теплообмена при конденсации впервые совмещены возможности визуализации течения и градиентной теплометрии. Измерена местная плотность теплового потока при капельно-ручейковой конденсации водяного пара на поверхности вертикальной пластины. В режиме капельно-ручейковой конденсации средняя плотность существенно нестационарного теплового потока составила 31.2 кВт/м2. Показана физическая картина, обеспечивающая пульсации теплового потока. Результаты эксперимента выявили возможности использования градиентной теплометрии как средства мониторинга теплообмена при конденсации.

Sobre autores

Э. Зайнуллина

Санкт-Петербургский политехнический университет Петра Великого

Autor responsável pela correspondência
Email: zaynullinaelza@gmail.com
Россия, Санкт-Петербург

В. Митяков

Санкт-Петербургский политехнический университет Петра Великого

Email: zaynullinaelza@gmail.com
Россия, Санкт-Петербург

Bibliografia

  1. Lee Y.-G., Jang Y.-J., Choi D.-J. An Experimental Study of Air–Steam Condensation on the Exterior Surface of a Vertical Tube under Natural Convection Conditions // Int. J. Heat Mass Transfer. 2017. V. 104. P. 1034.
  2. Su J., Sun Z., Ding M., Fan G. Analysis of Experiments for the Effect of Noncondensable Gases on Steam Condensation over a Vertical Tube External Surface under Low Wall Subcooling // Nucl. Eng. Des. 2014. V. 278. P. 644.
  3. Fan G., Tong P., Sun Z., Chen Y. Development of a New Empirical Correlation for Steam Condensation Rates in the Presence of Air Outside Vertical Smooth Tube // Ann. Nucl. Energy. 2018. V. 113. P. 139.
  4. Zhang J.X., Wang L. Experimental Study of Air Accumulation in Vapor Condensation Across Horizontal Tube // Int. J. Heat Mass Transfer. 2017. V. 111. P. 860.
  5. Tubes J.Li, Wang H.F., Sang Z.F. Enhanced Condensation Outside Horizontal Heat Transfer // AIP Conf. Proc. 2010. V. 1207. P. 628.
  6. Swartz M.M., Yao Sh.-Ch. Experimental Study of Turbulent Natural-convective Condensation on a Vertical Wall with Smooth and Wavy Film Interface // Int. J. Heat Mass Transfer. 2017. V. 113. P. 943.
  7. Lel V.V., Al-Sibai F., Renz U. Local Thickness and Wave Velocity Measurement of Wavy Films with a Chromatic Confocal Imaging Method and a Fluorescence Intensity Technique // Exp. Fluids. 2005. V. 39. P. 856.
  8. Sapozhnikov S.Z., Mityakov V.Y., Mityakov A.V., Babich A.Y., Zainullina E.R. An Investigation into Film Condensation of Saturated Steam on Tube Surfaces by a Gradient Heatmetry // Therm. Eng. 2021. V. 68. P. 794.
  9. Сапожников С.З., Митяков В.Ю., Митяков А.В., Бабич А.Ю., Зайнуллина Э.Р. Исследование теплообмена при конденсации на поверхностях труб методом градиентной теплометрии // Письма ЖТФ. 2019. Т. 45. Вып. 7. С. 15.
  10. Kuznetsov G.V., Ponomarev K.O., Feoktistov D.V., Orlova E.G., Lyulin Yu.V., Ouerdane H. Heat Transfer in a Two-phase Closed Thermosyphon Working in Polar Regions // Therm. Sci. Eng. Prog. 2021. V. 22. 100846.
  11. Xiao R., Miljkovic N., Enright R., Wang E. Immersion Condensation on Oil-infused Heterogeneous Surfaces for Enhanced Heat Transfer // Sci. Rep. 2013. V. 3. 1988.
  12. Tan B., Tian W.X., Chen R.H., Qui S.Z., Su G.H. Experimental Study of Air–Steam-Mixture Condensation Underneath Containment Vessel Surface // Nucl. Sci. Eng. 2021. V. 195. P. 838.
  13. Sapozhnikov S.Z., Mityakov V.Y., Mityakov A.V., Pavlov A.V., Bobylev P.G., Kikot N.E., Bikmulin A.V. Comprehensive Study of Boiling Regimes with Use of High-speed Imaging and Gradient Heatmetry // J. Phys.: Conf. Ser. 2021. V. 2127. 012058.
  14. Sapozhnikov S.Z., Mityakov V.Y., Seroshtanov V.V., Gusakov A.A. The Combination of PIV and Heat Flux Measurement in Study of Flow and Heat Transfer near a Circular Finned Cylinder // J. Phys.: Conf. Ser. 2019. V. 1421. 012064.
  15. Sapozhnikov S.Z., Mityakov V.Yu., Mityakov A.V. Heatmetry the Science and Practice of Heat Flux Measurement. St.-Petersburg: Springer Int. Publ., 2020. P. 209.
  16. Сапожников С.З., Митяков В.Ю., Митяков А.В., Гусаков А.А., Павлов А.В., Бобылев П.Г. Исследование кипения на поверхности шара методом градиентной теплометрии // Тепловые процессы в технике. 2021. Т. 13. № 10. С. 434.
  17. Митяков В.Ю., Павлов А.В., Бобылев П.Г. Создание и градуировка первичных преобразователей на основе композиции медь‒никель // Матер. межвуз. науч.-тех. конф. “Неделя науки СПбПУ”. Энергетика и транспорт (ИЭ). 18‒23 ноября 2019. СПб.: Политехпресс, 2020.
  18. Tinevez J.Y., Perry N., Schindelin J., Hoopes G.M., Reynolds G.D., Laplantine E., Bednarek S.Y. et al. TrackMate: An Open and Extensible Platform for Single-particle Tracking // Methods. 2017. V. 115. P. 80.
  19. Сумм Б.Д., Горюнов Ю.В. Физико-химические основы смачивания и растекания. М.: Химия, 1976. 232 с.
  20. Исаченко В.П. Теплообмен при конденсации. М.: Энергия, 1977. 240 с.
  21. Кутателадзе С.С. Теплопередача при конденсации и кипении. Л.: Машгиз, 1952. 231 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (154KB)
3.

Baixar (78KB)
4.

Baixar (871KB)
5.

Baixar (798KB)
6.

Baixar (126KB)
7.

Baixar (687KB)
8.

Baixar (777KB)
9.

Baixar (437KB)

Declaração de direitos autorais © Э.Р. Зайнуллина, В.Ю. Митяков, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies