Study of Drop-Stream Condensation by the Gradient Heatmetry

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The capabilities of flow visualization and gradient heatmetry are combined for the first time in studying heat transfer during condensation. The local heat flux per unit area during drop-stream condensation of water steam on the surface of a vertical plate was measured. In the drop-stream condensation mode, the average value of a significantly unsteady heat flux was about 31.2 kW/m2. The heat flux unsteady shows a complex physical picture of condensation. The results of the experiment revealed the possibility of using gradient heatmetry as a method for monitoring heat transfer during condensation.

Авторлар туралы

E. Zainullina

Peter the Great St. Petersburg Polytechnic University

Email: zaynullinaelza@gmail.com
St. Petersburg, Russia

V. Mityakov

Peter the Great St. Petersburg Polytechnic University

Хат алмасуға жауапты Автор.
Email: zaynullinaelza@gmail.com
St. Petersburg, Russia

Әдебиет тізімі

  1. Lee Y.-G., Jang Y.-J., Choi D.-J. An Experimental Study of Air–Steam Condensation on the Exterior Surface of a Vertical Tube under Natural Convection Conditions // Int. J. Heat Mass Transfer. 2017. V. 104. P. 1034.
  2. Su J., Sun Z., Ding M., Fan G. Analysis of Experiments for the Effect of Noncondensable Gases on Steam Condensation over a Vertical Tube External Surface under Low Wall Subcooling // Nucl. Eng. Des. 2014. V. 278. P. 644.
  3. Fan G., Tong P., Sun Z., Chen Y. Development of a New Empirical Correlation for Steam Condensation Rates in the Presence of Air Outside Vertical Smooth Tube // Ann. Nucl. Energy. 2018. V. 113. P. 139.
  4. Zhang J.X., Wang L. Experimental Study of Air Accumulation in Vapor Condensation Across Horizontal Tube // Int. J. Heat Mass Transfer. 2017. V. 111. P. 860.
  5. Tubes J.Li, Wang H.F., Sang Z.F. Enhanced Condensation Outside Horizontal Heat Transfer // AIP Conf. Proc. 2010. V. 1207. P. 628.
  6. Swartz M.M., Yao Sh.-Ch. Experimental Study of Turbulent Natural-convective Condensation on a Vertical Wall with Smooth and Wavy Film Interface // Int. J. Heat Mass Transfer. 2017. V. 113. P. 943.
  7. Lel V.V., Al-Sibai F., Renz U. Local Thickness and Wave Velocity Measurement of Wavy Films with a Chromatic Confocal Imaging Method and a Fluorescence Intensity Technique // Exp. Fluids. 2005. V. 39. P. 856.
  8. Sapozhnikov S.Z., Mityakov V.Y., Mityakov A.V., Babich A.Y., Zainullina E.R. An Investigation into Film Condensation of Saturated Steam on Tube Surfaces by a Gradient Heatmetry // Therm. Eng. 2021. V. 68. P. 794.
  9. Сапожников С.З., Митяков В.Ю., Митяков А.В., Бабич А.Ю., Зайнуллина Э.Р. Исследование теплообмена при конденсации на поверхностях труб методом градиентной теплометрии // Письма ЖТФ. 2019. Т. 45. Вып. 7. С. 15.
  10. Kuznetsov G.V., Ponomarev K.O., Feoktistov D.V., Orlova E.G., Lyulin Yu.V., Ouerdane H. Heat Transfer in a Two-phase Closed Thermosyphon Working in Polar Regions // Therm. Sci. Eng. Prog. 2021. V. 22. 100846.
  11. Xiao R., Miljkovic N., Enright R., Wang E. Immersion Condensation on Oil-infused Heterogeneous Surfaces for Enhanced Heat Transfer // Sci. Rep. 2013. V. 3. 1988.
  12. Tan B., Tian W.X., Chen R.H., Qui S.Z., Su G.H. Experimental Study of Air–Steam-Mixture Condensation Underneath Containment Vessel Surface // Nucl. Sci. Eng. 2021. V. 195. P. 838.
  13. Sapozhnikov S.Z., Mityakov V.Y., Mityakov A.V., Pavlov A.V., Bobylev P.G., Kikot N.E., Bikmulin A.V. Comprehensive Study of Boiling Regimes with Use of High-speed Imaging and Gradient Heatmetry // J. Phys.: Conf. Ser. 2021. V. 2127. 012058.
  14. Sapozhnikov S.Z., Mityakov V.Y., Seroshtanov V.V., Gusakov A.A. The Combination of PIV and Heat Flux Measurement in Study of Flow and Heat Transfer near a Circular Finned Cylinder // J. Phys.: Conf. Ser. 2019. V. 1421. 012064.
  15. Sapozhnikov S.Z., Mityakov V.Yu., Mityakov A.V. Heatmetry the Science and Practice of Heat Flux Measurement. St.-Petersburg: Springer Int. Publ., 2020. P. 209.
  16. Сапожников С.З., Митяков В.Ю., Митяков А.В., Гусаков А.А., Павлов А.В., Бобылев П.Г. Исследование кипения на поверхности шара методом градиентной теплометрии // Тепловые процессы в технике. 2021. Т. 13. № 10. С. 434.
  17. Митяков В.Ю., Павлов А.В., Бобылев П.Г. Создание и градуировка первичных преобразователей на основе композиции медь‒никель // Матер. межвуз. науч.-тех. конф. “Неделя науки СПбПУ”. Энергетика и транспорт (ИЭ). 18‒23 ноября 2019. СПб.: Политехпресс, 2020.
  18. Tinevez J.Y., Perry N., Schindelin J., Hoopes G.M., Reynolds G.D., Laplantine E., Bednarek S.Y. et al. TrackMate: An Open and Extensible Platform for Single-particle Tracking // Methods. 2017. V. 115. P. 80.
  19. Сумм Б.Д., Горюнов Ю.В. Физико-химические основы смачивания и растекания. М.: Химия, 1976. 232 с.
  20. Исаченко В.П. Теплообмен при конденсации. М.: Энергия, 1977. 240 с.
  21. Кутателадзе С.С. Теплопередача при конденсации и кипении. Л.: Машгиз, 1952. 231 с.

© Э.Р. Зайнуллина, В.Ю. Митяков, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>