Кристаллизация газонасыщенных слоев аморфного льда с зародышевыми кристаллами

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Experimental investigation of the spontaneous crystallization of gas-saturated layers of amorphous ice obtained by low-temperature condensation of supersonic streams of rarefied vapor and ethane at various orientations relative to the cooled substrate has been conducted. The presence of crystalline embryos formed in the supersonic vapor flow in a nonequilibrium medium provides conditions for initiating "hot" centers and the transition to spontaneous crystallization of the gas-saturated layer with the formation of gas hydrate. The obtained samples contained a high gas concentration significantly exceeding that for ethane hydrate in equilibrium. The high gas saturation indicates the presence of gas molecules in the porous medium of the condensate in a free state.

About the authors

M. Z. Faizullin

Institute of Thermophysics Ural Branch of the Russian Academy of Sciences

Email: faizullin@itp.uran.ru
Yekaterinburg, Russia

A. V. Vinogradov

Institute of Thermophysics Ural Branch of the Russian Academy of Sciences

Email: faizullin@itp.uran.ru
Yekaterinburg, Russia

A. S. Tomin

Institute of Thermophysics Ural Branch of the Russian Academy of Sciences

Email: faizullin@itp.uran.ru
Yekaterinburg, Russia

V. P. Koverda

Institute of Thermophysics Ural Branch of the Russian Academy of Sciences

Email: faizullin@itp.uran.ru
Yekaterinburg, Russia

V. M. Bryukhanov

Institute of Thermophysics Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: faizullin@itp.uran.ru
Yekaterinburg, Russia

References

  1. Mishima O. Reversible First-order Transition between Two H2O Amorphs at ~0.2 GPa and ~135 K // J. Chem. Phys. 1994. V. 100. № 8. P. 5910.
  2. Loerting T., Salzmann C., Kohl I., Mayer E., Hallbrucker A. A Second Distinct Structural “State” of High-density Amorphous Ice at 77 K and 1 bar // Phys. Chem. Chem. Phys. 2001. № 3. P. 5355.
  3. Loerting T., Winkel K., Seidl M., Bauer M., Mitterdorfer C., Handle P.H., Salzmann C.G., Mayer E., Finneyd J.L., Bowron D.T. How Many Amorphous Ices Are There? // Phys. Chem. Chem. Phys. 2011. № 13. P. 8783.
  4. Tonauer C.M., Fidler L.-R., Giebelmann J., Yama- shita K., Loerting T. Nucleation and Growth of Crystalline Ices from Amorphous Ices // J. Chem. Phys. 2023. V. 158. 141001.
  5. Stevenson K.P., Kimmel G.A., Dohnalek Z., Scott Smith R., Kay B.D. Controlling the Morphology of Amorphous Solid Water // Science. 1999. V. 283. P. 1505.
  6. Kimmel G.A., Stevenson K.P., Dohnalek Z., Scott Smith R., Kay B.D. Control of Amorphous Solid Water Morpho- logy Using Molecular Beams. I. Experimental Results // J. Chem. Phys. 2001. V. 114. № 12. P. 5284.
  7. Faizullin M.Z., Vinogradov A.V., Tomin A.S., Koverda V.P. Nonstationary Nucleation (Explosive Crystallization) in Layers of Amorphous Ice Prepared by Low-temperature Condensation of Supersonic Molecular Beams // Int. J. Heat Mass Transfer. 2017. V. 108. P. 1292.
  8. Файзуллин М.З., Виноградов А.В., Томин А.С., Коверда В.П. Исследование процессов конденсации и кристаллизации при образовании газовых гидратов в сверхзвуковых струях // ТВТ. 2019. Т. 57. № 5. С. 769.
  9. Faizullin M.Z., Vinogradov A.V., Koverda V.P. Hydrate Formation in Layers of Gas-saturated Amorphous Ice // Chem. Eng. Sci. 2015. V. 130. P. 135.
  10. Sloan E.D., Koh C.A. Clathrate Hydrates of Natural Gases. 3rd ed. Boca Raton: CRC Press, 2007. 752 p.
  11. Kvendolden K. Gas Hydrates–Geological Perspective and Global Change // Rev. Geophys. 1993. V. 31. № 2. P. 173.
  12. Hag B.U. Gas Hydrates: Greenhouse Nightmare? Energy Panacea or Pipe Dream? // GSA Today. 1998. V. 8. № 11. P. 1.
  13. Чернов А.А. Процессы кристаллизации. В кн.: Современная кристаллография. Т. 3. М.: Наука, 1980. С. 162.
  14. Suga H., Seki S. Thermodynamic Investigation on Glassy States of Pure Simple Compounds // J. Non-Cryst. Solids. 1974. V. 16. № 2. P. 171.
  15. Ghormley J.A. Enthalpy Changes and Heat-capacity Changes in the Transformations from High-surface- area Amorphous Ice to Stable Hexagonal Ice // J. Chem. Phys. 1968. V. 48. № 7. P. 503.
  16. Файзуллин М.З., Виноградов А.В., Коверда В.П. Свойства газовых гидратов, полученных неравновесной конденсацией молекулярных пучков // ТВТ. 2014. Т. 52. № 6. С. 852.
  17. Uhlmann D.R. A Kinetic Treatment of Glass Formation // J. Non-Cryst. Solids. 1972. V. 7. № 2. P. 337.
  18. Faizullin M.Z., Skokov V.N., Koverda V.P. Glass Transition and Crystallization of Water and Aqueous Solutions of Organic Liquids // J. Non-Cryst. Solids. 2010. V. 356. № 23–24. P. 1153.
  19. Torchet G., Schwartz J., Farges J., de Feraudy M.F., Raoult B. Structure of Solid Water Formed in a Free Jet Expansion // J. Chem. Phys. 1983. V. 79. № 12. P. 6196.
  20. Yakushev V.S., Istomin V.A. Gas Hydrate Self-preservation Effect. In: Physics and Chemistry of Ice / Eds. Maeno N., Hondoh T. Sapporo: Hokkaido Univ. Press, 1992. P. 136.
  21. Stern L.A., Circone S., Kirby S.H., Durham W.B. Ano-malous Preservation of Pure Methane Hydrate at 1 atm // J. Phys. Chem. B. 2021. V. 105. P. 1756.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).