Численное моделирование истечения сверхзвуковой перерасширенной газовой струи в жидкость
- Authors: Emelyanov V.N.1, Yakovchuk M.S.1
-
Affiliations:
- Baltic State Technical University "Voenmeh" named after D.F. Ustinov
- Issue: Vol 63, No 2 (2025)
- Pages: 287-297
- Section: Heat and Mass Transfer and Physical Gasdynamics
- URL: https://journals.rcsi.science/0040-3644/article/view/316280
- DOI: https://doi.org/10.31857/S0040364425020166
- ID: 316280
Cite item
Abstract
About the authors
V. N. Emelyanov
Baltic State Technical University "Voenmeh" named after D.F. UstinovSaint Petersburg, Russia
M. S. Yakovchuk
Baltic State Technical University "Voenmeh" named after D.F. Ustinov
Email: mihailyakovchuk@gmail.com
Saint Petersburg, Russia
References
- Hoefele E.O., Brimacombe J.K. Flow Regimes in Submerged Gas Injection // Metallurgical Trans. B. 1979. V. 10. № 4. P. 631.
- Labotz R.J. Hydrodynamic Consideration and Limitations in Submerged Rocket Firings // J. Spacecraft and Rockets. 1965. V. 2. № 3. P. 320.
- Дегтярь В.Г., Пегов В.И., Мошкин И.Ю., Чешко А.Д. Математическое моделирование процессов тепломассообмена горячих газовых струй с жидкостью при подводном старте ракет // ТВТ. 2019. Т. 57. № 5. С. 742.
- Emelyanov V.N., Volkov K.N., Yakovchuk M.S. Multiparameter Optimization of Thrust Vector Control with Transverse Injection of a Supersonic Underexpanded Gas Jet into a Convergent-divergent Nozzle // Energies. 2021. V. 14. 4359.
- Gulawani S.S., Deshpande S.S., Joshi J.B. Submerged Gas Jet into a Liquid Bath: A Review // Industrial and Engineering Chemistry Research. 2007. V. 46. № 10. P. 3188.
- Cloette S., Olsen J.E. CFD Modelling of Plume and Surface Behavior Resulting from Sub-sea Gas Release // Applied Ocean Research. 2009. V. 31. P. 220.
- Чжан Ч., Меньшов И.С. Численное моделирование истечения природного газа из подводного газопровода. Препринт № 74. М.: ИПМ им. М.В. Келдыша, 2017. 18 с.
- Zhang Z., Wang L., Ming F., Silberschmidt V.V., Chen H. Application of Smoothed Particle Hydrodynamics in Analysis of Shaped Charge Jet Penetration Caused by Underwater Explosion // Ocean Engineering. 2017. V. 45. P. 177.
- Hu Z., Wang Z., Yin J., Yi J. Formation and Penetration Capability of an Annular-shaped Charge // Mathematical Problems in Engineering. 2021. 6660189.
- Emelyanov V.N., Teterina I.V., Volkov K.N., Garkushev A.U. Pressure Oscillations and Instability of Working Processes in the Combustion Chambers of Solid Rocket Motors // Acta Astronautica. 2017. V. 135. P. 161.
- Khabbouchi I., Guellouz M.S., Nasrallah S.B. A Study of the Effect of the Jet-like Flow on the Near Wake Behind a Cylinder Close to a Plane Wall // Experimental Thermal and Fluid Science. 2013. V. 44. P. 285.
- Volkov K. Coupled Simulation of Fluid Flow and Vibro-acoustic Processes in the Channel with a Circular Cylinder // Fluids. 2022. V. 17. № 2. 382.
- Friedel M.J., Fannelop T. Bubble Plumes and Their Interaction with the Water Surface // Applied Ocean Research. 2000. V. 22. P. 347.
- Einardsrud K.E. Kinetic Energy Approach to Dissolving Multiphase Plumes // J. Hydraulics. 2009. V. 135. № 12. P. 1041.
- Zhou L., Yu Y. Experimental Study on Gas-curtain Generation Characteristics by Multicombustion-gas Jets in the Cylindrical Liquid Chamber // Ocean Engineering. 2015. V. 109. P. 410.
- Жаркова В.В., Щеляев А.Е., Дядькин А.А., Павлов А.О., Симакова Т.В. Расчет гидродинамических воздействий на возвращаемый аппарат при посадке на воду // Компьютерные исследования и моделирование. 2017. Т. 9. № 1. С. 37.
- Olson B.J., Lele S.K. A Mechanism for Unsteady Separation in Over-expanded Nozzle Flow // Phys. Fluids. 2013. V. 25. № 11. 110809.
- Loth E., Faeth G.M. Structure of Underexpanded Round Air Jets Submerged in Water // Int. J. Multiphase Flow. 1989. V. 15. № 4. P. 589.
- Miaosheng H., Lizi Q., Yu L. Oscillation Flow Induced by Underwater Supersonic Gas Jets from a Rectangular Laval Nozzle // Procedia Engineering. 2015. V. 99. P. 1531.
- Fronzeo M., Kinzel M. An Investigation of Gas Jets Submerged in Water // AIAA Paper. 2016. № 2016-4253.
- Shi H., Guo Q., Wang C., Dong R.-L., Zhang L.-T., Jia H.-X., Wang X.-G., Wang B.-Y. Oscillation Flow Induced by Underwater Supersonic Gas Jets // Shock Waves. 2010. V. 20. № 4. P. 347.
- Tang Y., Li S. The Mechanism for the Quasi-back-attack Phenomenon of Gas Jets Submerged in Water // Int. J. Aeronautical and Space Sciences. 2019. V. 20. P. 165.
- Zhang C., Sa R., Zhou D., Jiang H. Effects of Gas Velocity and Break Size on Steam Penetration Depth Using Gas Jet into Water Similarity Experiments // Progress in Nuclear Energy. 2017. V. 98. P. 38.
- Arghode V.K., Gupta A.K. Jet Characteristics from a Submerged Combustion System // Applied Energy. 2012. V. 89. № 1. P. 246.
- Han S., Moon K.H., Ko S., Kim J.K., Moon H.J., You Y.J., Kwan M.C. Feasibility Study and Demonstration of an Underwater Labscale Hybrid Rocket Propulsion // AIAA Paper. 2017. № 2017-5046.
- Weiland C. Round Gas Jets Submerged in Water // Int. J. Multiphase Flow. 2013. V. 48. P. 46.
- Zhang X., Li S., Yang B., Wang N. Flow Structures of Over-expanded Supersonic Gaseous Jets for Deep-water Propulsion // Ocean Engineering. 2020. V. 213. 107611.
- Zhang X., Li S., Yu D., Yang B., Wang N. The Evolution of Interface for Underwater Supersonic Gas Jets // Water. 2020. V. 12. 488.
- Иванов М.Ф., Опарин А.М., Султанов В.Г., Фортов В.Е. Некоторые особенности развития Релей–Тейлоровских неустойчивостей в трехмерной геометрии // Доклады РАН. Физика. 1999. Т. 367. № 4. С. 464.
- Widnall S.E., Bliss D.B., Tsai C.-Y. The Instability of Short Waves on a Vortex Ring // J. Fluid Mech. 1974. V. 66. № 1. P. 35.
- Huang N., Chen Z.-H., Wang Z.-L. Main Characteristics of Underwater Supersonic Gas Jet Flows // Mathe- matical Problems in Engineering. 2022. 1191938.
- Волков К.Н., Емельянов В.Н., Яковчук М.С. Конкуренция механизмов неустойчивости сверхзвуковой перерасширенной струи воздуха при ее истечении в воду // Письма в ЖТФ. 2023. Т. 49. № 21. С. 29.
- Hirt C.W., Nichols B.D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries // J. Comput. Phys. 1981. V. 39. № 1. P. 201.
- Thompson E. Use of Pseudo-concentrations to Follow Creeping Viscous Flows During Transient analysis // Int. J. Numerical Methods in Engineering. 1986. V. 6. № 10. P. 749.
- Brackbill J., Kothe D.B., Zemach C. A Continuum Method for Modelling Surface Tension // J. Comput. Phys. 1992. V. 100. № 2. P. 335.
- Ekman P., Wieser D., Virdung T., Karlsson M. Assessment of Hybrid RANS–LES Methods for Accurate Automotive Aerodynamic Simulations // Journal of Wind Engineering and Industrial Aerodynamics. 2020. V. 206. 104301.
- Menter F., Hüppe A., Matyushenko A., Kolmogorov D. An Overview of Hybrid RANS–LES Models Deve-loped for Industrial CFD // Applied Sciences. 2021. V. 11. 2459.
- Zhang K., Jin Y., Han X., He X. Very-large-eddy Simulation of Nonreactive Turbulent Flow for Annular Trapped Vortex Combustor // J. Appl. Fluid Mech. 2022. V. 15. № 2. P. 523.
- Menter F. Stress-blended Eddy Simulation (SBES) – A New Paradigm in Hybrid RANS–LES Modelling // Notes on Numerical Fluid Mechanics and Multidisciplinary Design. 2018. V. 137. P. 27.
- Batten P., Goldberg U., Chakravarthy S. LNS – An Approach Towards Embedded LES // AIAA-2002-0427. 2002.
- Walters D.K., Bhushan S., Alam M.F., Thompson D. Investigation of a Dynamic Hybrid RANS/LES Mo- delling Methodology for Finite Volume CFD Simulations // Flow, Turbulence and Combustion. 2013. V. 91. № 3. P. 643.
- Kim B.-C., Chang K. Assessment of Hybrid RANS/LES Models in Heat and Fluid Flows Around Staggered Pin-fin Arrays // Energies. 2020. V. 13. 3752.
- Volkov K. Numerical Analysis of Navier–Stokes Equations on Unstructured Meshes. In: Handbook on Navier–Stokes Equations: Theory and Analysis. Nova Science, 2016. P. 365.
- Volkov K. Multigrid and Preconditioning Techniques in CFD Applications. In: CFD Techniques and Thermo-mechanics Applications. Springer Int. Publ., 2018. P. 83.
- Roache P.J. Perspective: A Method for Uniform Reporting of Grid Refinement Studies // J. Fluids Engineering. 1994. V. 116. № 3. P. 405.
- Popinet S. Numerical Models of Surface Tension // Annual Rev. Fluid Mech. 2018. V. 50. P. 49.
- Vachaparambil K.J., Einarsrud K.E. Comparison of Surface Tension Models for the Volume of Fluid Method // Processes. 2019. V. 7. № 8. 542.
- Gutmark E.J., Schadow K.S., Yu K.H. Mixing Enhancement in Supersonic Free Shear Layer Flows // Annual Rev. Fluid Mech. 1995. V. 27. P. 375.
Supplementary files
