Особенности фемтосекундной лазерной абляции тонких пленок никеля

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Методом интерференционной микроскопии, сканирующей электронной и атомно-силовой микроскопии были исследованы особенности абляции нанопленок никеля различной толщины на стеклянных подложках после однократного воздействия лазерных импульсов длительностью 70 фс с интенсивностью 1012–1013 Вт/см2 на воздухе. В отличие от образца толщиной 30 нм для образца толщиной 125 нм в зависимости от энергии импульса реализовано не только полное, но и частичное удаление металлической пленки. Причиной этого может являться интерференция волн разряжения, отраженных от границ пленки, и локализация внутри нее растягивающих напряжений, приводящих к снижению абляционного порога. Определены значения порогов по поглощенной плотности энергии при разрыве внутри пленки и при ее отрыве от подложки. Для образца толщиной 125 нм получена зависимость глубины кратеров от плотности энергии нагревающих импульсов в широком диапазоне значений.

About the authors

E. V. Struleva

FGBUN Unified Institute of High Temperatures RAS (UIHT RAS), Moscow, Russia

Email: struleva.evgenia@yandex.ru

P. S. Komarov

FGBUN Unified Institute of High Temperatures RAS (UIHT RAS), Moscow, Russia

S. A. Evlashin

Skolkovo Institute of Science and Technology, Moscow, Russia

S. I. Ashitkov

FGBUN Unified Institute of High Temperatures RAS (UIHT RAS), Moscow, Russia

References

  1. Vorobyev A.Y., Guo C. Direct Femtosecond Laser Surface Nano/Microstructuring and Its Applications // Laser Photonics Rev. 2013. V. 7. P. 385.
  2. Baldacchini T., Carey J.E., Zhou M., Mazur E. Superhydrophobic Surfaces Prepared by Microstructuring of Silicon Using a Femtosecond Laser // Langmuir. 2006. V. 22. P. 4917.
  3. Xie X., Li Y., Wang G., Bai Z., Yu Y., Wang Y., Ding Y., Lu Z. Femtosecond Laser Processing Technology for Anti-reflection Surfaces of Hard Materials // Micromachines. 2022. V. 13. P. 1084.
  4. Tsakalakos L., Balch J., Fronheiser J., Korevaar B.A., Sulima O., Rand J. Silicon Nanowire Solar Cells // Appl. Phys. Lett. 2007. V. 91. P. 233117.
  5. Kim J.B., Lu Y.H., Cho M.H., Lee G.J., Lee Y.P., Rhee J.Y., Yoon C.S. Diffracted Magneto-optical Kerr Effect in Onedimensional Magnetic Gratings // Appl. Phys. Lett. 2009. V. 94. P. 151110.
  6. Banks D.P., Grivas C., Mills J.D., Zergioti I., Eason R.W. Nanodroplets Deposited in Microarrays by Femtosecond Ti:Sapphire Laser-induced Forward Transfer // Appl. Phys. Lett. 2006. V. 89. P.193107.
  7. Xiao F., Wu T., Chiou P.Y., Near Field Photothermal Printing of Gold Microstructures and Nanostructures // Appl. Phys. Lett. 2010. V. 97. P. 031112.
  8. Bera S., Sabbah A.J., Yarbrough J.M., Allen C.G., Winters B. Optimization Study of the Femtosecond Laser-induced Forward-Transfer Process with Thin Aluminum Films // Appl. Opt. V. 46. P. 4650.
  9. Bäuerle D. Laser Processing and Chemistry. Berlin/Heidelberg, Germany: Springer Science & Business Media, 2013.
  10. Анисимов С.И., Лукьянчук Б.С. Избранные задачи теории лазерной абляции // УФН. 2002. Т. 172. № 3. С. 301.
  11. Sokolowski-Tinten K., Bialkowski J., Cavalleri A., von der Linde D., Oparin A., Meyer-ter-Vehn J., Anisimov S.I. Transient States of Matter During Short Pulse Laser Ablation // Phys. Rew. Lett. 1998. V. 81. P. 224.
  12. Иногамов Н.А., Жаховский В.В., Ашитков С.И., Петров Ю.В., Агранат М.Б., Анисимов С.И., Нишихара К., Фортов В.Е. О наноотколе после воздействия ультракороткого лазерного импульса // ЖЭТФ. 2008. Т. 134. Вып. 1. С. 5.
  13. Ашитков С.И., Комаров П.С., Овчинников А.В., Струлева Е.В., Жаховский В.В., Иногамов Н.А., Агранат М.Б. Абляция металлов и образование наноструктур под действием фемтосекундных лазерных импульсов // Квантовая электроника. 2014. Т. 44. № 6. С. 535.
  14. Vorobyev A.Y., Guo C. Enhanced Absorptance of Gold Following Multipulse Femtosecond Laser Ablation // Phys. Rev. B. 2005. V. 72. P. 195422.
  15. Romashevskiy S.A., Agranat M.B., Dmitriev A.S. Thermal Training of Functional Surfaces Fabricated with Femtosecond Laser Pulses // High Temp. 2016. V. 54. № 3. P. 461.
  16. Струлева Е.В., Комаров П.С., Ромашевский С.А., Евлашин С.А., Ашитков С.И. Фемтосекундная лазерная абляция железа // ТВТ. 2021. Т. 59. № 5. С. 663.
  17. Заярный Д.А., Ионин А.А., Кудряшов С.И. и др. Наномасштабные процессы кипения при одноимпульсной фемтосекундной лазерной абляции золотых пленок // Письма ЖЭТФ. 2015. Т. 101. № 6. С. 428.
  18. Данилов П.А., Заярный Д.А., Ионин A.A., Кудряшов С.И., Нгуен Ч.Т.Х., Руденко А.А., Сараева И.Н., Кучмижак А.А., Витрик О.Б., Кульчин Ю.Н. Структура и механизмы лазерного формирования микроконусов на поверхности серебряных пленок варьируемой толщины // Письма ЖЭТФ. 2016. Т. 103. № 8. С. 617.
  19. Данилов П.А., Заярный Д.А., Ионин А.А., Кудряшов С.И., Руденко А.А., Кучмижак А.А., Витрик О.Б., Кульчин Ю.Н., Жаховский В.В., Иногамов Н.А. Перераспределение материала при фемтосекундной лазерной абляции тонкой серебряной пленки // Письма ЖЭТФ. 2016. Т. 104. № 11. С. 780.
  20. Ромашевский С.А., Хохлов В.А., Ашитков С.И., Жаховский В.В., Иногамов Н.А., Комаров П.С., Паршиков А.Н., Петров Ю.В., Струлева Е.В., Цыганков П.А. Фемтосекундное лазерное воздействие на многослойную наноструктуру металл–металл // Письма ЖЭТФ. 2021. Т. 113. № 5. С. 311.
  21. Khokhlov V.A., Inogamov N.A., Zhakhovsky V.V., Shepelev V.V., Il’nitsky D.K. Thin 10–100 nm Film in Contact with Substrate: Dynamics after Femtosecond Laser Irradiation // J. Phys.: Conf. Ser. 2015. V. 653. P. 012003.
  22. Хохлов В.А., Ромашевский С.А., Ашитков С.И., Иногамов Н.А. Синхронное детектирование нелинейных явлений в оптоакустических осцилляциях нанопленки, инициированных фемтосекундным лазерным импульсом // Письма ЖЭТФ. 2024. Т. 120. С. 550.
  23. Ромашевский С.А., Ашитков С.И., Хохлов В.А., Иногамов Н.А. Исследование релаксации энергии в нанопленке никеля после сверхбыстрого нагрева электронной подсистемы фемтосекундным лазерным импульсом // ТВТ. 2024. Т. 62. № 6. С. 906.
  24. Murphy R.D., Torralva B., Yalisove S.M. The Role of an Interface on Ni Film Removal and Surface Roughness after Irradiation by Femtosecond Laser Pulses // Appl. Phys. Lett. 2013. V. 102. P. 181602.
  25. Varlamov P., Marx J., Elgueta Y.U., Ostendorf A., Kim J.-W., Vavassori P., Temnov V. Femtosecond Laser Ablation and Delamination of Functional Magnetic Multilayers at the Nanoscale // Nanomaterials. 2024. V. 14. P. 1488.
  26. Temnov V.V., Sokolovski-Tinten K., Zhou P., von der Linde D. Ultrafast Imaging Interferometry at Femtosecond Laser-excited Surfaces // J. Opt. Soc. Am. B. 2006. V. 23. № 9. P. 1954.
  27. Агранат M.Б., Андреев H.Е., Ашитков С.И., Вейсман М.Е., Левашов П.Р., Овчинников А.В., Ситников Д.С., Фортов В.Е., Хищенко К.В. Определение транспортных и оптических свойств неидеальной плазмы твердотельной плотности при фемтосекундном лазерном воздействии // Письма ЖЭТФ. 2007. Т. 85. Вып. 6. С. 328.
  28. Inogamov N.A., Zhakhovskii V.V., Ashitkov S.I., Khokhlov V.A., Petrov Yu.V., Komarov P.S., Agranat M.B., Anisimov S.I., Nishihara K. Two-temperature Relaxation and Melting after Absorption of Femtosecond Laser Pulse // Appl. Surf. Sci. 2009. V. 255. № 24. P. 9712.
  29. Liu J.M. Simple Technique for Measurements of Pulsed Gaussian-beam Spot Sizes // Opt. Lett. 1982. V. 7. № 5. P. 196.
  30. Струлева Е.В., Комаров П.С., Ашитков С.И. Сравнение фемтосекундной лазерной абляции золота и никеля // ТВТ. 2019. Т. 57. № 5. С. 659.
  31. Ашитков С.И., Иногамов Н.А., Жаховский В.В., Эмиров Ю.Н., Агранат М.Б., Олейник И.И., Анисимов С.И., Фортов В.Е. Образование нанополостей в поверхностном слое алюминиевой мишени при воздействии фемтосекундных лазерных импульсов // Письма ЖЭТФ. 2012. Т. 95. С. 192.
  32. Ашитков С.И., Ромашевский С.А., Комаров П.С., Бурмистров А.А., Жаховский В.В., Иногамов Н.А., Агранат М.Б. Образование наноструктур при фемтосекундной лазерной абляции металлов // Квантовая электроника. 2015. Т. 45. С. 547.
  33. Анисимов С.И., Жаховский В.В., Иногамов Н.А., Нишихара К., Петров Ю.В., Хохлов В.А. Разлет вещества и формирование кратера под действием ультракороткого лазерного импульса // ЖЭТФ. 2006. Т. 130. № 2. С. 212.
  34. Hohlfeld J., Wellershoff S.-S., Gudde J., Conrad U., Jahnke V., Matthias E. Electron and Lattice Dyna-mics Following Optical Excitation of Metals // Chem. Phys. 2000. V. 251. P. 237.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».