Моделирование методом теории функционала плотности интеркаляции ионов в гексацианоферраты железа и меди
- Authors: Chekushkin P.M.1,2, Kislenko V.A.1, Kislenko C.A.1
-
Affiliations:
- United Institute of High Temperatures, RAS
- Moscow Institute of Physics and Technology (National Research University)
- Issue: Vol 63, No 2 (2025)
- Pages: 229-236
- Section: Thermophysical Properties of Materials
- URL: https://journals.rcsi.science/0040-3644/article/view/316273
- DOI: https://doi.org/10.31857/S0040364425020091
- ID: 316273
Cite item
Abstract
About the authors
P. M. Chekushkin
United Institute of High Temperatures, RAS; Moscow Institute of Physics and Technology (National Research University)
Email: chekushkin.pm@phystech.edu
Moscow, Russia; Russia
V. A. Kislenko
United Institute of High Temperatures, RAS
Email: kislenko@ihed.ras.ru
Moscow, Russia
C. A. Kislenko
United Institute of High Temperatures, RAS
Email: kislenko@ihed.ras.ru
Moscow, Russia
References
- Wu X., Song K., Zhang X., Hu N., Li L., Li W., Zhang L., Zhang H. Safety Issues in Lithium Ion Batteries: Materials and Cell Design // Front. Energy Res. 2019. V. 7. P. 65.
- Schmuch R., Wagner R., Hörpel G., Placke T., Winter M. Performance and Cost of Materials for Lithium-based Rechargeable Automotive Batteries // Nat. Energy. 2018. V. 3. № 4. P. 267.
- Zhu W., Li A., Wang Z., Yang J., Xu Y. Metal–Organic Frameworks and Their Derivatives: Designing Principles and Advances toward Advanced Cathode Materials for Alkali Metal Ion Batteries // Small. 2021. V. 17. № 22. P. 2006424.
- Wessells C.D., Huggins R.A., Cui Y. Copper Hexacyanoferrate Battery Electrodes with Long Cycle Life and High Power // Nat. Commun. 2011. V. 2. № 1. P. 550.
- Wang B., Liu S., Sun W., Tang Y., Pan H., Yan M., Jiang Y. Intercalation Pseudocapacitance Boosting Ultrafast Sodium Storage in Prussian Blue Analogs // ChemSusChem. 2019. V. 12. № 11. P. 2415.
- Wang R.Y., Wessells C.D., Huggins R.A., Cui Y. Highly Reversible Open Framework Nanoscale Electrodes for Divalent Ion Batteries // Nano Lett. 2013. V. 13. № 11. P. 5748.
- Mizuno Y., Okubo M., Hosono E., Kudo T., Zhou H., Oh-ishi K. Suppressed Activation Energy for Interfacial Charge Transfer of a Prussian Blue Analog Thin Film Electrode with Hydrated Ions (Li+, Na+, and Mg2+) // J. Phys. Chem. C. 2013. V. 117. № 21. P. 10877.
- Sun X., Duffort V., Nazar L.F. Prussian Blue Mg–Li Hybrid Batteries // Adv. Sci. 2016. V. 3. № 8. P. 1600044.
- Komayko A.I., Ryazantsev S.V., Trussov I.A., Arkharova N.A., Presnov D.E., Levin E.E., Nikitina V.A. The Misconception of Mg2+ Insertion into Prussian Blue Analogue Structures from Aqueous Solution // ChemSusChem. 2021. V. 14. № 6. P. 1574.
- Ling Y., He B., Han L., Gong W., Chang C., Zhang Q. Two-electron Redox Chemistry Enables Potassium-free Copper Hexacyanoferrate as High-capacity Cathode for Aqueous Mg-ion Battery // InfoMat. 2024. V. 6. № 6. P. 12549.
- Asai M., Takahashi A., Tajima K., Tanaka H., Ishizaki M., Kurihara M., Kawamoto T. Effects of the Variation of Metal Substitution and Electrolyte on the Electrochemical Reaction of Metal Hexacyanoferrates // RSC Adv. 2018. V. 8. № 65. P. 37356.
- Gamaethiralalage J.G., Singh K., Sahin S., Yoon J., Elimelech M., Suss M.E., Liang P., Biesheuvel P.M., Zornitta R.L., De Smet L.C.P.M. Recent Advances in Ion Selectivity with Capacitive Deionization // Energy Environ. Sci. 2021. V. 14. № 3. P. 1095.
- Ling C., Chen J., Mizuno F. First-principles Study of Alkali and Alkaline Earth Ion Intercalation in Iron Hexacyanoferrate: The Important Role of Ionic Radius // J. Phys. Chem. C. 2013. V. 117. № 41. P. 21158.
- Targholi E., Mousavi-Khoshdel S.M., Rahmanifara M., Yahya M.Z.A. Cu- and Fe-Hexacyanoferrate as Cathode Materials for Potassium Ion Battery: A First-principles Study // Chem. Phys. Lett. 2017. V. 687. P. 244.
- Jiang P., Shao H., Chen L., Feng J., Liu Z. Ion-selective Copper Hexacyanoferrate with an Open-framework Structure Enables High-voltage Aqueous Mixed-ion Batteries // J. Mater. Chem. A. 2017. V. 5. № 32. P. 16740.
- Wang X., Pandey S., Fullarton M., Phillpot S.R. Study of Incorporating Cesium into Copper Hexacyanoferrate by Density Functional Theory Calculations // J. Phys. Chem. C. 2021. V. 125. № 43. P. 24273.
- Chen L., Shao H., Zhou X., Liu G., Jiang J., Liu Z. Water-mediated Cation Intercalation of Open-framework Indium Hexacyanoferrate with High Voltage and Fast Kinetics // Nat. Commun. 2016. V. 7. № 1. P. 11982.
- Guo X., Wang Z., Deng Z., Li X., Wang B., Chen X., Ong S.P. Water Contributes to Higher Energy Density and Cycling Stability of Prussian Blue Analogue Cathodes for Aqueous Sodium-ion Batteries // Chem. Mater. 2019. V. 31. № 15. P. 5933.
- Ojwang D.O., Grins J., Wardecki D., Valvo M., Renman V., Häggström L., Ericsson T., Gustafsson T., Mahmoud A., Hermann R.P., Svensson G. Structure Characterization and Properties of K-containing Copper Hexacyanoferrate // Inorg. Chem. 2016. V. 55. № 12. P. 5924.
- Wang X., Ta A.T., Quemerais S., Grandjean A., Zur Loye H.-C., Phillpot S.R. Incorporation of Alkali Ions into Hydrated Copper Hexacyanoferrate by Density Functional Theory Calculations // Chem. Mater. 2024. V. 36. № 14. P. 6731.
- Herren F., Fischer P., Ludi A., Haelg W. Neutron Diffraction Study of Prussian Blue, Fe4[Fe(CN)6]3 · xH2O. Location of Water Molecules and Long-range Magnetic Order // Inorg. Chem. 1980. V. 19. № 4. P. 956.
- Sharma V.K., Mitra S., Thakur N., Yusuf S.M., Juranyi F., Mukhopadhyay R. Dynamics of Water in Prussian Blue Analogues: Neutron Scattering Study // J. Appl. Phys. 2014. V. 116. № 3. P. 034909.
- Kresse G., Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-wave Method // Phys. Rev. B. 1999. V. 59. № 3. P. 1758.
- Anisimov V.I., Zaanen J., Andersen O.K. Band Theory and Mott Insulators: Hubbard U instead of Stoner I // Phys. Rev. B. 1991. V. 44. № 3. P. 943.
- Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865.
- Aydinol M.K., Kohan A.F., Ceder G., Cho K., Joannopoulos J. Ab Initio Study of Lithium Intercalation in Metal Oxides and Metal Dichalcogenides // Phys. Rev. B. 1997. V. 56. № 3. P. 1354.
- Liu C., Neale Z.G., Cao G. Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries // Mater. Today. 2016. V. 19. № 2. P. 109.
- Urban A., Seo D.-H., Ceder G. Computational Understanding of Li-ion Batteries // Npj Comput. Mater. 2016. V. 2. № 1. P. 16002.
- Aydinol M.K., Kohan A.F., Ceder G. Ab Initio Calculation of the Intercalation Voltage of Lithium–Transition-metal Oxide Electrodes for Rechargeable Batteries // J. Power Sources. 1997. V. 68. № 2. P. 664.
- Julien C., Mauger A., Zaghib K., Groult H. Comparative Issues of Cathode Materials for Li-ion Batteries // Inorganics. 2014. V. 2. № 1. P. 132.
- Linstrom P. NIST Chemistry WebBook, NIST Standard Reference Database 69. National Institute of Standards and Technology, 1997.
- CRC Handbook of Chemistry and Physics. 97th ed. / Eds. Haynes W.M., Lide D.R., Bruno T.J. CRC Press, 2016.
- Sai Gautam G., Canepa P., Richards W.D., Malik R., Ceder G. Role of Structural H2O in Intercalation Electrodes: The Case of Mg in Nanocrystalline Xerogel-V2O5 // Nano Lett. 2016. V. 16. № 4. P. 2426.
- Ozoliņš V., Zhou F., Asta M. Ruthenia-based Electrochemical Supercapacitors: Insights from First-principles Calculations // Acc. Chem. Res. 2013. V. 46. № 5. P. 1084.
- Lin H., Zhou F., Liu C.-P., Ozoliņš V. Non-Grotthuss Proton Diffusion Mechanism in Tungsten Oxide Dihydrate from First-principles Calculations // J. Mater. Chem. A. 2014. V. 2. № 31. P. 12280.
- Laubach S., Laubach S., Schmidt P.C., Ensling D., Schmid S., Jaegermann W., Thißen A., Nikolowski K., Ehrenberg H. Changes in the Crystal and Electronic Structure of LiCoO2 and LiNiO2 upon Li Intercalation and De-intercalation // Phys. Chem. Chem. Phys. 2009. V. 11. № 17. P. 3278.
- Chatenet M., Pollet B.G., Dekel D.R., Dionigi F., Deseure J., Millet P., Braatz R.D., Bazant M.Z., Eikerling M., Staffell I., Balcombe P., Shao-Horn Y., Schäfer H. Water Electrolysis: from Textbook Knowledge to the Latest Scientific Strategies and Industrial Developments // Chem. Soc. Rev. 2022. V. 51. № 11. P. 4583.
Supplementary files
