Микроскопическая коллективная динамика атомов расплава меди вблизи температуры плавления
- Authors: Khusnutdinoff R.M.1
-
Affiliations:
- Kazan State Energy University
- Issue: Vol 63, No 2 (2025)
- Pages: 218-228
- Section: Thermophysical Properties of Materials
- URL: https://journals.rcsi.science/0040-3644/article/view/316272
- DOI: https://doi.org/10.31857/S0040364425020089
- ID: 316272
Cite item
Abstract
About the authors
R. M. Khusnutdinoff
Kazan State Energy University
Email: khrm@mail.ru
Kazan, Russia
References
- Montfrooij W., de Schepper I. Excitations in Simple Liquids, Liquid Metals, and Superfluids. N.Y.: Oxford University Press, 2010. 288 p.
- Pines D. Elementary Excitations in Solids. N.Y.–Amsterdam: W.A. Benjamin Inc., 1963. 200 p.
- Boon J.P., Yip S. Molecular Hydrodynamics. N.Y.: McGraw-Hill, 1980. 417 p.
- Brazhkin V.V., Trachenko K. Collective Excitations and Thermodynamics of Disordered State: New Insights into an Old Problem // J. Phys. Chem. B. 2014. V. 118. P. 11417.
- Trachenko K., Brazhkin V.V. Collective Modes and Thermodynamics of the Liquid State // Rep. Prog. Phys. 2016. V. 79. P. 016502.
- March N.H. Liquid Metals: Concepts and Theory. Cambridge: Cambridge University Press, 1990. 508 p.
- Balucani U., Zoppi M. Dynamics of the Liquid State. Oxford: Clarendon Press, 1994. 178 p.
- Levesque D., Verlet L., Kurkijarvi J. Computer «Experiments» on Classical Fluids. IV. Transport Properties and Time-Correlation Functions of the Lennard-Jones Liquid near Its Triple Point // Phys. Rev. A. 1973. V. 7. P. 1690.
- Hansen J.P., McDonald I.R. Theory of Simple Liquids. N.Y.: Acad. Press, 2006. 416 p.
- Hosokawa S., Inui M., Kajihara Y., Matsuda K., Ichitsubo T., Pilgrim W.C., Sinn H., Gonzalez L.E., Gonzalez D.J., Tsutsui S., Baron A.Q.R. Transverse Acoustic Excitations in Liquid Ga // Phys. Rev. Lett. 2009. V. 102. P. 105502.
- Hosokawa S., Munejiri S., Inui M., Kajihara Y., Pilgrim W.-C., Ohmasa Y., Tsutsui S., Baron A.Q.R., ShimojoF., Hoshino K. Transverse Excitations in Liquid Sn // J. Phys. Condens. Matter. 2013. V. 25. P. 112101.
- Hosokawa S., Munejiri S., Inui M., Kajihara Y., Pilgrim W.-C., Baron A.Q.R., Shimojo F., Hoshino K. Transverse Excitations in Liquid Metals // AIP Conf. Proc. 2013. V. 1518. P. 695.
- Hosokawa S., Inui M., Kajihara Y., Tsutsui S., Baron A.Q.R. Transverse Excitations in Liquid Fe, Cu, and Zn // J. Phys.: Condens. Matter. 2015. V. 27. P. 194104.
- Scopigno T., Pontecorvo E., Di Leonardo R., Krisch M., Monaco G., Ruocco G., Ruzicka B., Sette F. High-frequency Transverse Dynamics in Glasses // J. Phys.: Condens. Matter. 2003. V. 15. P. S1269.
- Sampoli M., Ruocco G., Sette F. Mixing of Longitudinal and Transverse Dynamics in Liquid Water // Phys. Rev. Lett. 1997. V. 79. P. 1678.
- Cimatoribus A., Saccani S., Bencivenga F., Gessini A., Izzo M.G., Masciovecchio C. The Mixed Longitudinal–Transverse Nature of Collective Modes in Water // New J. Phys. 2010. V. 12. P. 053008.
- Dell’Anna R., Ruocco G., Sampoli M., Viliani G. High Frequency Sound Waves in Vitreous Silica // Phys. Rev. Lett. 1998. V. 80. P. 1236.
- Ruzicka B., Scopigno T., Caponi S., Fontana A., Pilla O., Giura P., Monaco G., Pontecorvo E., Ruocco G., Sette F. Evidence of Anomalous Dispersion of the Generalized Sound Velocity in Glasses // Phys. Rev. B. 2004. V. 69. P. 100201.
- Bove L.E., Fabiani E., Fontana A., Paoletti F., Petrillo C., Pilla O., Bento I.C.V. Brillouin Neutron Scattering of v-GeO2 // Europhys. Lett. 2005. V. 71. P. 563.
- Orsingher L., Baldi G., Fontana A., Bove L.E., Unruh T., Orecchini A., Petrillo C., Violini N., Sacchetti F. High-frequency Dynamics of Vitreous GeSe2 // Phys. Rev. B. 2010. V. 82. P. 115201.
- Fomin Yu.D., Ryzhov V.N., Tsiok E.N., Brazhkin V.V. Excitation Spectra of Liquid Iron up to Superhigh Temperatures // J. Phys.: Condens. Matter. 2017. V. 29. P. 345401.
- Plimpton S.J. Fast Parallel Algorithms for Short-range Molecular Dynamics // J. Comput. Phys. 1995. V. 117. P. 1.
- Sheng H.W., Kramer M.J., Cadien A., Fujita T., Chen M.W. Highly Optimized Embedded-atom-method Potentials for Fourteen FCC Metals // Phys. Rev. B. 2011. V. 83. P. 134118.
- Белащенко Д.К. Потенциалы модели погруженного атома для жидких меди и серебра // Неорг. материалы. 2012. Т. 48. № 9. С. 1062.
- Mendelev M.I., Kramer M.J., Becker C.A., Asta M. Analysis of Semi-empirical Interatomic Potentials Appropriate for Simulation of Crystalline and Liquid Al and Cu // Phil. Mag. 2008. V. 88. P. 1723.
- Mishin Y., Mehl M.J., Papaconstantopoulos D.A., Voter A.F., Kress J.D. Structural Stability and Lattice Defects in Copper: Ab initio, Tight-binding, and Embedded-atom Calculations // Phys. Rev. B. 2001. V. 63. P. 224106.
- Sharifi H., Wick C.D. Developing Interatomic Potentials for Complex Concentrated Alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn // Comp. Mat. Sci. 2025. V. 248. P. 113595.
- Etesami S.A., Asadi E. Molecular Dynamics for near Melting Temperatures Simulations of Metals Using Modified Embedded-atom Method // J. Phys. Chem. Sol. 2018. V. 112. P. 61.
- Waseda Y. The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids. N.Y.: McGraw-Hill, 1980. 326 p.
- Copley J.R.D., Lovesey S.W. The Dynamic Properties of Monatomic Liquids // Rep. Prog. Phys. 1975. V. 38. P. 461.
- Zwanzig R. Memory Effects in Irreversible Thermodynamics // Phys. Rev. 1961. V. 124. P. 983.
- Mori H. Transport, Collective Motion, and Brownian Motion // Prog. Theor. Phys. 1965. V. 33. P. 423.
- Мокшин А.В., Юльметьев Р.М., Хуснутдинов Р.М., Хангги П. Коллективная динамика жидкого алюминия вблизи температуры плавления: теория и компьютерное моделирование // ЖЭТФ. 2006. Т. 130. С. 974.
- Michler E., Hahn H., Schofield P. Calculation of the Neutron Scattering Law of Liquid Aluminium // J. Phys. F: Metal Phys. 1977. V. 7. P. 869.
- Хуснутдинов Р.М., Мокшин А.В., Меньшикова С.Г., Бельтюков А.Л., Ладьянов В.И. Вязкостные и акустические свойства расплавов AlCu // ЖЭТФ. 2016. Т. 149. С. 994.
- Боголюбов Н.Н. Динамические проблемы в статистической физике. М.: Гостехиздат, 1946. 120 с.
- Мокшин А.В. Самосогласованный подход к описанию релаксационных процессов в классических многочастичных системах // ТМФ. 2015. Т. 183. № 1. С. 3.
- Yulmetyev R.M., Mokshin A.V., Hänggi P., Shurygin V.Yu. Time-scale Invariance of Relaxation Processes of Density Fluctuation in Slow Neutron Scattering in Liquid Cesium // Phys. Rev. E. 2001. V. 64. P. 057101.
- Yulmetyev R.M., Mokshin A.V., Hänggi P., Shury-gin V.Yu. Dynamic Structure Factor in Liquid Cesium on the Basis of Time-scale Invariance of Relaxation Processes // JETP Lett. 2002. V. 76. P. 147.
- Yulmetyev R.M., Mokshin A.V., Scopigno T., Hänggi P. New Evidence for the Idea of Time-scale Invariance of Relaxation Processes in Simple Liquids: the Case of Molten Sodium // J. Phys.: Condens. Matter. 2003. V. 15. P. 2235.
- Mokshin A.V., Yulmetyev R.M., Khusnutdinoff R.M., Hänggi P. Analysis of the Dynamics of Liquid Aluminium: Recurrent Relation Approach // J. Phys.: Condens. Matter. 2007. V. 19. P. 046209.
- Zwanzig R. Noneqilibrium Statistical Mechanics. Oxford: Clarendon Press, 2001. 222 p.
- Götze W. Complex Dynamics of Glass Forming Liquids. A Mode-Coupling Theory. Oxford: Oxford University Press, 2009. 656 p.
- Mithen J.P., Daligault J., Crowley B.J.B., Gregori G. Density Fluctuations in the Yukawa One-component Plasma: an Accurate Model for the Dynamical Structure Factor // Phys. Rev. E. 2011. V. 84. P. 046401.
- Mithen J.P. Transverse Current Fluctuations in the Yukawa One-component Plasma // Phys. Rev. E. 2014. V. 89. P. 013101.
- Berne B.J., Boon J.P., Rice S.A. On the Calculation of Autocorrelation Functions of Dynamical Variables // J. Chem. Phys. 1966. V. 45. P. 1086.
- Bafile U., Guarini E., Barocchi F. Collective Acoustic Modes as Renormalized Damped Oscillators: Unified Description of Neutron and x-Ray Scattering Data from Classical Fluids // Phys. Rev. E. 2006. V. 73. P. 061203.
- Aliotta F., Gapinski J., Pochylski M., Ponterio R.C., Saija F., Vasi C. Collective Acoustic Modes in Liquids: A Comparison between the Generalized-hydrodynamics and Memory-function Approaches // Phys. Rev. E. 2011. V. 84. P. 051202.
- Rahman A. Correlations in the Motion of Atoms in Liquid Argon // Phys. Rev. 1964. V. 136. P. A405.
- Tankeshwar K., Pathak K.N., Ranganathan S. Self-diffusion Coefficients of Lennard-Jones Fluids // J. Phys. C: Solid State Phys. 1987. V. 20. P. 5749.
- Tankeshwar K., Pathak K.N., Ranganathan S. The Shear Viscosity of Lennard-Jones Fluids // J. Phys. C: Solid State Phys. 1988. V. 21. P. 3607.
- Singh S., Tankeshwar K. Collective Dynamics in Liquid Lithium, Sodium, and Aluminum // Phys. Rev. E. 2003. V. 67. P. 012201.
- Nuevo M.J., Morales J.J., Heyes D.M. Temperature and Density Dependence of the Self-diffusion Coefficient and Mori Coefficients of Lennard-Jones Fluids by Molecular Dynamics Simulation // Phys. Rev. E. 1997. V. 55. P. 4217.
- Shimoho F., Hoshino K., Watabe M. Dynamical Correlation Functions and Memory Functions of Liquid Sodium–A Molecular Dynamics Simulation // J. Phys. Soc. Jpn. 1994. V. 63. P. 141.
- Torcini A., Balucani U., de Jong P.H.K., Verkerk P. Microscopic Dynamics in Liquid Lithium // Phys. Rev. E. 1995. V. 51. P. 3126.
- Casas J., Gonzalez D.J., Gonzalez L.E. Dynamical Properties of Liquid Lithium above the Melting Point // Phys. Rev. B. 1999. V. 60. P. 10094.
- Egelstaff P.A. Collective Modes and Many Body Forces in Fluids: An Experimental Study // Phys. Chem. Liq. 1987. V. 16. P. 293.
- Vogelsang R., Hoheisel C. The Friction Coefficient of a Lennard-Jones Fluid from the Random Force Autocorrelation Function Determined as a Memory Function by Molecular Dynamics Calculations // J. Stat. Phys. 1989. V. 54. P. 315.
- Khusnutdinoff R.M., Khairullina R.R., Beltyukov A.L., Lad’yanov V.I., Mokshin A.V. Viscous Properties of Nickel-containing Binary Metal Melts // J. Physics: Condens. Matter. 2021. V. 33. P. 104006.
- Barker M.I., Gaskell T. Velocity Autocorrelation Function and Diffusion Coefficient in a Liquid. II // J. Phys. C. 1972. V. 5. P. 353.
- Sjogren L. Numerical Results on the Velocity Correlation Function in Liquid Argon and Rubidium // J. Phys. C. 1980. V. 13. P. 705.
- Kneller G.R., Hinsen K. Computing Memory Functions from Molecular Dynamics Simulations // J. Chem. Phys. 2001. V. 115. P. 11097.
- Lee M.H. Can the Velocity Autocorrelation Function Decay Exponentially? // Phys. Rev. Lett. 1983. V. 51. P. 1227.
- Ryltsev R.E., Chtchelkatchev N.M. Hydrodynamic Anomalies in Supercritical Fluid // J. Chem. Phys. 2014. V. 141. P. 124509.
- Marqués M., González D.J., González L.E. Structure and Dynamics of High-pressure Na Close to the Melting Line: An ab initio Molecular Dynamics Study // Phys. Rev. B. 2016. V. 94. P. 024204.
- Fomin Yu.D., Ryzhov V.N., Tsiok E.N., Brazhkin V.V. Excitation Spectra of Liquid Iron up to Super-high Temperatures // J. Phys.: Condens. Matter. 2017. V. 29. P. 345401.
- Del Rio B.G., González L.E. Longitudinal, Transverse, and Single-particle Dynamics in Liquid Zn: Ab initio Study and Theoretical Analysis // Phys. Rev. B. 2017. V. 95. P. 224201.
- Khusnutdinoff R.M., Cockrell C., Dicks O.A., Jensen A.C.S., Le M.D., Wang L., Dove M.T., Mokshin A.V., Brazhkin V.V., Trachenko K. Collective Modes and Gapped Momentum States in Liquid Ga: Experiment, Theory, and Simulation // Phys. Rev. B. 2020. V. 101. P. 214312.
- Kryuchkov N.P., Mistryukova L.A., Brazhkin V.V., Yurchenko S.O. Excitation Spectra in Fluids: How to Analyze Them Properly // Sci. Rep. 2019. V. 9. P. 10483.
- Trachenko K., Brazhkin V.V. Collective Modes and Thermodynamics of the Liquid State // Rep. Prog. Phys. 2015. V. 79. P. 016502.
- Yang C., Dove M.T., Brazhkin V.V., Trachenko K. Emergence and Evolution of the k Gap in Spectra of Liquid and Supercritical States // Phys. Rev. Lett. 2017. V. 118. P. 215502.
Supplementary files
