Экспериментальное исследование коагуляции аэрозолей при формировании вихревых течений в неоднородном ультразвуковом поле

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Предложен и экспериментально исследован новый подход к повышению эффективности коагуляции тонкодисперсных аэрозолей за счет формирования вихревых течений в неоднородном ультразвуковом поле. Установлено, что формируемые плоским излучателем в неоднородном ультразвуковом поле вихревые течения обеспечивают повышение эффективности коагуляции при воздействии на газодисперсный поток, инжектируемый в коагуляционную камеру при скорости до 0.2 м/с. При ее превышении нарушается структура суммарного поля скоростей, и частицы аэрозоля пролетают камеру, не успевая взаимодействовать с полем акустических течений за время, достаточное для осаждения на стенках. Эффективность коагуляции за счет вихревых течений линейно возрастает при увеличении уровня звукового давления до 165 дБ. После этого дальнейшего роста эффективности коагуляции не наблюдается. Выявлено, что эффективность коагуляции в сравнении с коагуляцией в однородном ультразвуковом поле для капель размером 0.2–0.6 мкм возрастает на 25%, для капель размером 1.8 мкм – на 20%, а для капель размером более 2.5 мкм прирост эффективности составляет не более 17%.

Об авторах

В. Н. Хмелев

Бийский технологический институт (филиал) ФГБОУ ВО “Алтайский государственный технический университет им. И.И. Ползунова”

Автор, ответственный за переписку.
Email: vnh@bti.secna.ru
Россия, Алтайский край, Бийск

А. В. Шалунов

Бийский технологический институт (филиал) ФГБОУ ВО “Алтайский государственный технический университет им. И.И. Ползунова”

Email: shalunov@bti.secna.ru
Россия, Алтайский край, Бийск

В. А. Нестеров

Бийский технологический институт (филиал) ФГБОУ ВО “Алтайский государственный технический университет им. И.И. Ползунова”

Email: vnh@bti.secna.ru
Россия, Алтайский край, Бийск

Список литературы

  1. Медников Е.П. Акустическая коагуляция и осаждение аэрозолей. М.: Изд-во АН СССР, 1963. 263 с.
  2. Розенберг Л.Д. Физика и техника ультразвука / Под ред. Розенберга Л.Д. М.: Наука, 1970. 685 с.
  3. Губайдуллин Д.А. Динамика двухфазных парогазокапельных сред. Казань: Изд-во Казанск. мат. общ-ва, 1998. 156 с.
  4. Пицуха Е.А., Теплицкий Ю.С., Бородуля В.А. Унос частиц из циклонной камеры // ИФЖ. 2012. Т. 3. № 3. С. 1196.
  5. Тукмаков А.Л., Кашапов Н.Ф., Тукмаков Д.А., Фазлыйяхматов М.Г. Процесс осаждения заряженной полидисперсной газовзвеси на поверхность пластины в электрическом поле // ТВТ. 2018. Т. 56. № 4. С. 499.
  6. Губайдуллин Д.А., Зарипов Р.Г., Ткаченко Л.А., Шайдуллин Л.Р. Динамика табачного дыма при резонансных колебаниях в закрытой трубе // ТВТ. 2019. Т. 57. № 2. С. 312.
  7. Sheng C., Shen X. Simulation of Acoustic Agglomeration Processes of Poly-disperse Solid Particles // Aerosol Sci. Technol. 2007. V. 41. № 1. P. 1.
  8. Chen H., Liu W., Li J., Xun X., Shen X. Experimental Study on Acoustic Agglomeration of Fine Particles from Coal Combustion // Mater. Int. Conf. Digital Manufac. Automation. Changsha, 2010. P. 702.
  9. Губайдуллин Д.А., Зарипов Р.Г., Осипов П.П., Ткаченко Л.А., Шайдуллин Л.Р. Волновая динамика газовзвесей и отдельных частиц при резонансных колебаниях // ТВТ. 2021. Т. 59. № 3. С. 443.
  10. König W. Hydrodynamisch-akustische Untersuchungen. Über die Kräfte zwischen zwei Kugeln in einer schwingenden Flüssigkeit und über die Entstehung der Kundtschen Staubfiguren // Ann. Phys. Chem. 1891. Bd. 42. Hf. 4. S. 549.
  11. Тукмаков А.Л., Ахунов А.А. Эволюция состава и изменение характера колебаний коагулирующей газовзвеси в волновом поле акустического резонатора // ТВТ. 2022. Т. 60. № 6. С. 873.
  12. Губайдуллин Д.А., Зарипов Р.Г., Ткаченко Л.А., Шайдуллин Л.Р. Экспериментальное исследование осаждения аэрозоля в закрытой трубе с изменяющимся сечением // ТВТ. 2022. Т. 60. № 1. С. 146.
  13. Brandt O., Freund H., Hiedemann E. Zur Theorie der Akustischen Koagulation // Kolloid-Zeitschrift. 1936. Bd. 77. S. 103.
  14. Yuen W.T., Fu S.C., Chao C.Y. The Correlation between Acoustic Streaming Patterns and Aerosol Removal Efficiencies in an Acoustic Aerosol Removal System // Aerosol Sci. Technol. 2016. V. 50. № 1. P. 52.
  15. Khmelev V.N., Shalunov A.V., Nesterov V.A. Improving the Separation Efficient of Particles Smaller than 2.5 Micrometer by Combining Ultrasonic Agglomeration and Swirling Flow Techniques // PLoS One. 2020. V. 15. № 9. P. e0239593.
  16. Вараксин А.Ю. К выбору инерционности частиц, используемых для оптической диагностики высокоскоростных газовых потоков // ТВТ. 2021. Т. 59. № 3. С. 411.
  17. Khmelev V.N., Shalunov A.V., Nesterov V.A. Summation of High-frequency Langevin Transducers Vibrations for Increasing of Ultrasonic Radiator Power // Ultrasonics. 2021. V. 114. P. 106413.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».