Numerical Simulation of the Interaction of a Shock Wave with a Foam Layer Using a Two-Fluid Approach

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article studies the applicability of the Baer–Nunziato two-fluid model to the problem of interaction of a shock wave with a foam layer. The determining system of equations is formulated. A computational algorithm based on the Harten–Lax–Van Leer scheme with contact discontinuity resolution, including phase velocity and pressure relaxation stages, is proposed and described in detail. Using the proposed computational technology, the problem of propagation of a weak perturbation in a two-phase medium is considered. The propagation velocity obtained is close to the estimate using Wood formula. The problem of the interaction of a shock wave with a foam layer near an impenetrable wall is also considered. The formulation corresponds to full-scale experiments. The nonstationary wave dynamics realized in this problem using the proposed model is described. Good qualitative and quantitative agreement is obtained between the calculation results and experimental data.

About the authors

P. A. Chuprov

Joint Institute for High Temperatures, Russian Academy of Sciences; Institute for Computer Aided Design, Russian Academy of Sciences

Email: petchu@mail.ru
Moscow, Russia; Moscow, Russia

P. S. Utkin

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: petchu@mail.ru
Moscow, Russia

S. V. Fortova

Institute for Computer Aided Design, Russian Academy of Sciences

Email: petchu@mail.ru
Moscow, Russia

A. D. Kiverin

Joint Institute for High Temperatures, Russian Academy of Sciences

Author for correspondence.
Email: petchu@mail.ru
Moscow, Russia

References

  1. Британ А.Б., Зиновик И.Н., Левин В.А. Разрушение пены ударными волнами // ФГВ. 1992. № 5. С. 108.
  2. Sembian S., Liverts M., Apazidis N. Attenuation of Strong External Blast by Foam Barriers // Phys. Fluids. 2016. V. 28. № 9. 096105.
  3. Kichatov B., Korshunov A., Kiverin A., Son E. Foamed Emulsion – Fuel on the Base of Water-saturated Oils // Fuel. 2017. V. 203. P. 261.
  4. Kichatov B., Korshunov A., Gubernov V., Kiverin A., Yakovenko I. Combustion of Heptane-in-Water Emulsion Foamed with Hydrogen–Oxygen Mixture // Fuel Proc. Technol. 2020. V. 198. 106230.
  5. Kichatov B., Korshunov A., Kiverin A., Medvetskaya N. Combustion of Foamed Emulsion Prepared via Bubbling of Oxygen–Nitrogen Gaseous Mixture through the Oil-in-Water Emulsion // Fuel Proc. Technol. 2019. V. 186. P. 25.
  6. Яковенко И.С., Киверин А.Д. Развитие нестационарных процессов горения во вспененных эмульсиях // ТВТ. 2022. Т. 60. № 6. С. 928.
  7. Суров В.С. Об отражении воздушной ударной волны от слоя пены // ТВТ. 2000. Т. 38. № 1. С. 101.
  8. Губайдуллин Д.А., Зарипов Р.Р. Влияние фазовых переходов на распространение акустических волн в многофракционных газовзвесях с полидисперсными включениями // ТВТ. 2021. Т. 59. № 1. С. 133.
  9. Губайдуллин Д.А., Федоров Ю.В. Акустические волны в жидкости с газовыми включениями, имеющими жидкую прослойку и вязкоупругую оболочку // ТВТ. 2021. Т. 59. № 4. С. 533.
  10. Kiverin A., Yakovenko I., Kichatov B., Korshunov A. Ignition and Non-stationary Combustion of the Foamed Heptane-in-Water Emulsion: Experimental and Numerical Analysis // Fuel. 2022. V. 320. 123824.
  11. Kiverin A., Yakovenko I. Numerical Modeling of Combustion and Detonation in Aqueous Foams // Energies. 2021. V. 14. № 19. 6233.
  12. Poroshyna Y.E., Utkin P.S. Numerical Simulation of a Normally Incident Shock Wave – Dense Particles Layer Interaction Using the Godunov Solver for the Baer–Nunziato Equations // Int. J. Multiphase Flow. 2021. V. 142. 103718.
  13. Baer M.R., Nunziato J.W. A Two-phase Mixture Theory for the Deflagration-to-detonation Transition in Reactive Granular Materials // Int. J. Multiphase Flow. 1986. V. 12. № 6. P. 861.
  14. Saurel R., Abrall R. A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows // J. Comput. Phys. 1999. V. 150. P. 425.
  15. Уткин П.С., Фортова С.В. Математическое моделирование высокоскоростного взаимодействия металлических пластин в рамках двухжидкостного эйлерова подхода // ЖВМиМФ. 2018. Т. 58. № 8. С. 90.
  16. Chuprov P., Utkin P., Fortova S. Numerical Simulation of a High-Speed Impact of Metal Plates Using a Three-Fluid Model // Metals. 2021. V. 11. № 8. 1233.
  17. Baer M.R. A Numerical Study of Shock Wave Reflections on Low Density Foam // Shock Waves. 1992. V. 2. P. 121.
  18. Warren W.E., Kraynik A.M. The Nonlinear Elastic Behavior of Open-cell Foams // J. Appl. Mech. 1991. V. 58. P. 376.
  19. Toro E.F., Spruce M., Speares W. Restoration of the Contact Surface in the HLL-Riemann Solver // Shock Waves. 1994. V. 4. P. 25.
  20. Чупров П.А., Порошина Я.Э., Уткин П.С. Численное моделирование прохождения ударной волны над плотным слоем частиц в рамках уравнений Баера–Нунциато // Горение и взрыв. 2022. Т. 15. № 2. С. 67.
  21. Уткин П.С. Математическое моделирование взаимодействия ударной волны с плотной засыпкой частиц в рамках двухжидкостного подхода // Хим. физика. 2017. Т. 36. № 11. С. 61.
  22. Wood A. A Textbook of Sound. London: G. Bell, 1941.
  23. Британ А.Б., Зиновик И.Н., Левин В.А., Митичкин С.Ю., Тестов В.Г., Хайбо Ху. Особенности распространения газодинамических возмущений при взаимодействии ударных волн с двухфазными средами пенистой структуры // ЖТФ. 1995. Т. 65. № 7. С. 19.
  24. Кутушев А.Г., Рудаков Д.А. Численное исследование воздействия ударной волны на преграду, экранируемую слоем пористой порошкообразной среды // ПМТФ. 1993. № 5. С. 25.
  25. Нигматулин Р.И. Динамика многофазных сред. Ч. 1. М.: Наука, 1987.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (80KB)
3.

Download (28KB)
4.

Download (165KB)
5.

Download (150KB)

Copyright (c) 2023 П.А. Чупров, П.С. Уткин, С.В. Фортова, А.Д. Киверин

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».