Quantum-chemical modeling of the mechanism of Fe(III) extraction from a hydrochloric acid solution by 1-octanol-based eutectic solvents
- Autores: Maltseva V.E.1, Milevskaya A.V.1, Milevskii N.A.1, Zakhodyaeva Y.A.1, Voshkin A.A.1, Ananiev I.V.1
-
Afiliações:
- Institute of General and Inorganic Chemistry. N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Edição: Volume 59, Nº 3 (2025)
- Páginas: 13-22
- Seção: Articles
- ##submission.datePublished##: 15.12.2025
- URL: https://journals.rcsi.science/0040-3571/article/view/352820
- DOI: https://doi.org/10.7868/S3034605325030021
- ID: 352820
Citar
Resumo
Quantum-chemical modeling of the mechanism of Fe(III) extraction from hydrochloric acid solution using hydrophobic eutectic solvents based on 1-octanol has been carried out. It was found that the reaction pathway differs significantly depending on whether the inert component is a donor or acceptor of hydrogen bonding in the dimer with octanol. Based on the evaluation of hydrogen bonding strength, it is shown that weaker interaction between the components simplifies the extraction process according to the proposed mechanism. In addition, according to the results of Born-Oppenheimer molecular dynamics simulations, intermolecular interactions between the components have an influence on the macrokinetics of the process: a strong interaction between the inert component and octanol leads to enhanced aggregation in the organic phase.
Sobre autores
V. Maltseva
Institute of General and Inorganic Chemistry. N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: Tatiana.V.Guseva@gmail.com
Moscow, Russia
A. Milevskaya
Institute of General and Inorganic Chemistry. N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: Tatiana.V.Guseva@gmail.com
Moscow, Russia
N. Milevskii
Institute of General and Inorganic Chemistry. N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: Tatiana.V.Guseva@gmail.com
Moscow, Russia
Y. Zakhodyaeva
Institute of General and Inorganic Chemistry. N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: Tatiana.V.Guseva@gmail.com
Moscow, Russia
A. Voshkin
Institute of General and Inorganic Chemistry. N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: Tatiana.V.Guseva@gmail.com
Moscow, Russia
I. Ananiev
Institute of General and Inorganic Chemistry. N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Autor responsável pela correspondência
Email: Tatiana.V.Guseva@gmail.com
Moscow, Russia
Bibliografia
- Wazeer I., Hizaddin H.F., Hashim M.A., Hadj-Kali M.K.An overview about the extraction of heavy metals and other critical pollutants from contaminated water via hydrophobic deep eutectic solvents // J. Environ. Chem. Eng. 2022. V. 10. № 6. P. 108574.
- Abranches D.O., Coutinho J.A.P.Type V deep eutectic solvents: Design and applications // Curr. Opin. Green Sust. 2022. V. 35. P. 100612.
- Malik A., Dhattarwal H.S., Kashyap H.K.An Overview of Structure and Dynamics Associated with Hydrophobic Deep Eutectic Solvents and Their Applications in Extraction Processes // Chem. Phys. Chem. 2022. V. 23. № 18. P. e202200239.
- Gilmore M., McCourt E.N., Connolly F., Nockemann P., Swadźba-Kwaśny M., Holbrey J.D.Hydrophobic Deep Eutectic Solvents Incorporating Trioctylphosphine Oxide: Advanced Liquid Extractants // ACS Sustain. Chem. Eng. 2018. V. 6. № 12. P. 17323.
- Liu R., Geng Y., Tian Z., Wang N., Wang M., Zhang G., Yang Y.Extraction of platinum(IV) by hydrophobic deep eutectic solvents based on trioctylphosphine oxide // Hydrometallurgy. 2021. V. 199. № 1. P. 105521.
- Schaeffer N., Martins M.A.R., Neves C.M., Pinho S.P., Coutinho J.A.P.Sustainable hydrophobic terpene-based eutectic solvents for the extraction and separation of metals // Chem. Commun. 2018. V. 54. № 58. P. 8104.
- Ushizaki S., Kanemaru S., Sugamoto K. et al.Selective extraction equilibria of Sc(III), Y(III), Fe(III) and Al(III) from acidic media with toluene mixture of deep eutectic solvent (DES) composed of TOPO and isostearic acid // Anal. Sci. 2023. V. 39. № 4. P. 473.
- Cherniakova M., Varchenko V., Belikov K.Menthol-Based (Deep) Eutectic Solvents: A Review on Properties and Application in Extraction // Chem. Rec. 2024. V. 24. № 2. P. e202300267.
- Kozhevnikova A.V., Uvarova E.S., Maltseva V.E., Ananyev, I.V., Milevskii N.A., Fedulov I.S., Zakhodyaeva Y.A., Voshkin A.A.Design of Eutectic Solvents with Specified Extraction Properties Based on Intermolecular Interaction Energy // Molecules. 2024. V. 29. № 21. P. 5022.
- Sokolov A., Valeev. D., Kasikov, A.Solvent Extraction of Iron(III) from Al Chloride Solution of Bauxite HCl Leaching by Mixture of Aliphatic Alcohol and Ketone // Metals. 2021. V. 11. № 2. P. 321.
- Maangar A.E., Prevost S., Dourdain S., Zemb T.Molecular mechanisms induced by phase modifiers used in hydrometallurgy: consequences on transfer efficiency and process safety // Comptes Rendus. Chimie. 2022. V. 25. № G1. P. 341.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al.Gaussian 16. Revision C.01. Wallingford (CT): Gaussian, Inc., 2016.
- Adamo C., Barone V.Toward reliable density functional methods without adjustable parameters: The PBE0 model // J. Chem. Phys. 1999. V. 110. № 13. P. 6158.
- Hellweg A., Rappoport D.Development of new auxiliary basis functions of the Karlsruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations // Phys. Chem. Chem. Phys. 2015. V. 17. № 2. P. 1010.
- Grimme S., Ehrlich S., Goerigk L.Effect of the damping function in dispersion corrected density functional theory // J. Comput. Chem. 2011. V. 32. № 7. P. 1456.
- Bader R.F.W. A Quantum Theory of Molecular Structure and Its Applications // Chem. Rev. 1991. V. 91. № 5. P. 893.
- Espinosa E., Lecomte C., Molins E.Experimental electron density overlapping in hydrogen bonds: topology vs. energetics // Chem. Phys. Lett. 1999. V. 300. № 5-6. P. 745.
- Romanova A., Lyssenko K., Ananyev I.Estimations of energy of noncovalent bonding from integrals over interatomic zero-flux surfaces: Correlation trends and beyond // J. Comput. Chem. 2018. V. 39. № 21. P. 1607.
- Karnoukhova V.A., Fedyanin I.V., Dubasova E.V., Anisimov A.A., Ananyev I.V.Concerning virial-based estimations of strength of bonding intermolecular interactions in molecular crystals and supramolecular complexes // Mendeleev Commun. 2023. V. 33. № 3. P. 353.
- Keith T.D.AIMAll: Version 19.10.12. Overland Park KS, USA: TK Gristmill Software, 2019.
- Humphrey W., Dalke A., Schulten K.VMD – Visual Molecular Dynamics // J. Molec. Graphics. 1996. V. 14. № 1. P. 33.
- Grimme S., Bannwarth C., Shushkov P.A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parameterized for All spd-Block Elements (Z = 1-86) // J. Chem. Theory Comput. 2017. V. 13.№ 5. P. 1989.
Arquivos suplementares


