Denitrogenation of Light Hydrocarbon Fractions with Natural Deep Eutectic Solvents Using Commercial Extraction Equipment

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Hydrophilic deep eutectic solvents are actively positioned as efficient extractants for removing heterocyclic compounds from light hydrocarbon fractions. Of particular interest is the subclass of natural deep eutectic solvents (NaDESs), since they contain substances of exclusively natural origin. However, these processes have not been systematically studied to date in extraction equipment. To study the process of countercurrent extraction of pyridine, quinoline, and indole from a model solution of light hydrocarbon fractions
using commercial equipment, a series of NaDESs based on citric and malic acids, xylitol, and water was used for the first time in this work. The high extraction capacity of these NaDES was demonstrated in laboratory experiments, and the extraction mechanism was determined. A detailed study of the efficiency of extraction of heterocycles with varying process conditions allowed us to move on to studying the process using extractors
of the mixer–settler type. From the model solution of light hydrocarbon fractions, pyridine, quinoline, and indole were removed to concentrations <1 ppm by countercurrent extraction using a cascade of six mixer–settlers.

Авторлар туралы

D. Lobovich

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yz@igic.ras.ru
Moscow, 119991 Russia

S. Solov’eva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yz@igic.ras.ru
Moscow, 119991 Russia

N. Milevskii

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yz@igic.ras.ru
Moscow, 119991 Russia

Yu. Zakhodyaeva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yz@igic.ras.ru
Moscow, 119991 Russia

A. Voshkin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: yz@igic.ras.ru
Moscow, 119991 Russia

Әдебиет тізімі

  1. Federal Register :: Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards. – URL: https://www.federalregister.gov/ documents/2013/05/21/2013-08500/controlof-air-pollution-from-motor-vehicles-tier-3-motorvehicle-emission-and-fuel-standards
  2. World health statistics 2022: monitoring health for the SDGs, sustainable development goals. URL: https://www.who.int/publications-detail-redirect/97892-40051157.
  3. Wang Z., Wang Z., Sun Z., Ma K., Du L., Yuan R. Evolution of S/N containing compounds in pyrolysis of highly oily petroleum sludge // Fuel. 2022. V. 318. P. 123687.
  4. Rashidi S., Khosravi Nikou M.R., Anvaripour B. Adsorptive desulfurization and denitrogenation of model fuel using HPW and NiO-HPW modified aluminosilicate mesostructures // Microporous and Mesoporous Materials. 2015. V. 211. P. 134–141.
  5. Jiang X., Zhu S., Gao J., Yu Y., Xiong C., Li C., Yang W. Extractive removal of both basic and non-basic nitrogens from fuel oil by dicarboxyl-modified polyethylene glycol: Performance and mechanism // Fuel. 2019. V. 254. P. 115626.
  6. Gaile A.A., Kostenko A.V., Semenov L.V., Koldobskaya L.L. Extraction of 1-Methylnaphthalene, Benzothiophene, and Indole with N-Methylpyrrolidone from Their Mixtures with Alkanes // Russian J. Applied Chemistry. 2005. V. 78. № 9. P. 1403–1407.
  7. Lemaoui T., Benguerba Y., Darwish A.S., Hatab F.A., Warrag S.E.E., Kroon M.C., Alnashef I.M. Simultaneous dearomatization, desulfurization, and denitrogenation of diesel fuels using acidic deep eutectic solvents as extractive agents: A parametric study // Separation and Purification Technology. 2021. V. 256. P. 117861.
  8. Mohsen-Nia M., Modarress H., Doulabi F., Bagheri H. Liquid + liquid equilibria for ternary mixtures of (solvent + aromatic hydrocarbon + alkane) // The J. Chemical Thermodynamics. 2005. V. 37. № 10. P. 1111–1118.
  9. Mokhtar W.N.A.W., Bakar W.A.W.A., Ali R., Kadir A.A.A. Deep desulfurization of model diesel by extraction with N,N-dimethylformamide: Optimization by Box–Behnken design // J. Taiwan Institute of Chemical Engineers. 2014. V. 45. № 4. P. 1542–1548.
  10. Rodriguez N.R., Requejo P.F., Kroon M.C. Aliphatic–Aromatic Separation Using Deep Eutectic Solvents as Extracting Agents // Industrial & Engineering Chemistry Research. 2015. V. 54. № 45. P. 11404–11412.
  11. Zakhodyaeva Yu.A., Solov’ev V.O., Zinov’eva I.V., Rudakov D.G., Timoshenko A.V., Voshkin A.A. Interphase Distribution of Thiophene, Toluene, and o-Xylene in the Hexane–Polymer–Water Extraction System // Theoretical Foundations of Chemical Engineering. 2019. V. 53. № 4. P. 550–555.
  12. Solov’ev V.O., Zakhodyaeva Yu.A., Voshkin A.A. On the Influence of Additives of Polymer, Sodium Nitrate, and 1-Methyl-2-Pyrrolidone on the Extraction of Thiophene in an n-Hexan–Water System // Theoretical Foundations of Chemical Engineering. 2020. V. 54. № 5. P. 894–899.
  13. Soloviev V.O., Solovieva S.V., Zakhodyaeva Yu.A., Voshkin A.A. Extraction of Thiophene with Methyl Ether of Polyethylene Glycol 350 // Theoretical Foundations of Chemical Engineering. 2021. V. 55. № 6. P. 1178–1184.
  14. Solov’ev V.O., Solov’eva S.V., Zakhodyaeva Y.A., Voshkin A.A. Extractive denitrogenization of liquid model fuel using polyethylene glycol methyl ether 350 // The Canadian J. Chemical Engineering. 2023. P. cjce.25096.
  15. Kozhevnikova A.V., Zinov’eva I.V., Milevskii N.A., Zakhodyaeva Y.A., Voshkin A.A. Complex extraction of rare earth elements from nitrate solutions with a tri-n-octylamine-octanoic acid bifunctional ionic liquid // J. Molecular. Liquids. 2023. V. 390. P. 123073.
  16. Królikowski M., Więckowski M., Zawadzki M. Separation of organosulfur compounds from heptane by liquid–liquid extraction with tricyanomethanide based ionic liquids. Experimental data and NRTL correlation // The J. Chemical Thermodynamics. 2020. V. 149. P. 106149.
  17. Zhang Z., Li Y., Gao J., Yohannes A., Song H., Yao S. Removal of Pyridine, Quinoline, and Aniline from Oil by Extraction with Aqueous Solution of (Hydroxy)quinolinium and Benzothiazolium Ionic Liquids in Various Ways // Separations. 2021. V. 8. № 11. P. 216.
  18. Królikowska M., Królikowski M., Domańska U. Effect of Cation Structure in Quinolinium-Based Ionic Liquids on the Solubility in Aromatic Sulfur Compounds or Heptane: Thermodynamic Study on Phase Diagrams // Molecules. 2020. V. 25. № 23. P. 5687.
  19. Rogošić M., Sander A., Pantaler M. Application of 1-pentyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide for desulfurization, denitrification and dearomatization of FCC gasoline // The J. Chemical Thermodynamics. 2014. V. 76. P. 1–15.
  20. Wang H., Xie C., Yu S., Liu F. Denitrification of simulated oil by extraction with H2PO4-based ionic liquids // Chemical Engineering J. 2014. V. 237. P. 286–290.
  21. Zhang T., Bing X., Wang D., Gao J., Zhang L., Xu D., Zhang Y., Wang Y. Extraction and multi-scale mechanism explorations for separating indole from coal tar via tetramethylguanidine-based ionic liquids // J. Environmental Chemical Engineering. 2021. V. 9. № 3. P. 105255.
  22. Jiao T., Ren C., Lin S., Zhang L., Xu X., Zhang Y., Zhang W., Liang P. The extraction mechanism research for the separation of indole through the formation of deep eutectic solvents with quaternary ammonium salts // J. Molecular Liquids. 2022. V. 347. P. 118325.
  23. Dai Y., Van Spronsen J., Witkamp G.-J., Verpoorte R., Choi Y.H. Natural deep eutectic solvents as new potential media for green technology // Analytica Chimica Acta. 2013. V. 766. P. 61–68.
  24. Tang B., Bi W., Tian M., Row K.H. Application of ionic liquid for extraction and separation of bioactive compounds from plants // J. Chromatography B. 2012. V. 904. P. 1–21.
  25. Zuo Y., Wu J., Chen X., Wei N., Tong J. Green and low-cost deep eutectic solvents for efficient extraction of basic and non-basic nitrides in simulated oils // Separation and Purification Technology. 2023. V. 325. P. 124714.
  26. Chandran D., Khalid M., Walvekar R., Mubarak N.M., Dharaskar S., Wong W.Y., Gupta T.C.S.M. Deep eutectic solvents for extraction-desulphurization: A review // J. Molecular Liquids. 2019. V. 275. P. 312–322.
  27. Milevskii N.A., Zinov’eva I.V., Kozhevnikova A.V., Zakhodyaeva Y.A., Voshkin A.A. Sm/Co Magnetic Materials: A Recycling Strategy Using Modifiable Hydrophobic Deep Eutectic Solvents Based on Trioctylphosphine Oxide // International J. Molecular Sciences, 2023. V. 24. № 18. P. 14032.
  28. Zinov’eva I.V., Kozhevnikova A.V., Milevskii N.A., Zakhodyaeva Yu.A., Voshkin A.A. Extraction of Cu(II), Ni(II), and Al(III) with the Deep Eutectic Solvent D2EHPA/Menthol // Theoretical Foundations of Chemical Engineering. 2022. V. 56. № 2. P. 221–229.
  29. Ali M.C., Yang Q., Fine A.A., Jin W., Zhang Z., Xing H., Ren Q. Efficient removal of both basic and non-basic nitrogen compounds from fuels by deep eutectic solvents // Green Chemistry. 2016. V. 18. № 1. P. 157–164.
  30. Darwish A.S., Abu Hatab F., Lemaoui T., A.Z. Ibrahim O., Almustafa G., Zhuman B., E.E. Warrag S., Hadj-Kali M.K., Benguerba Y., Alnashef I.M. Multicomponent extraction of aromatics and heteroaromatics from diesel using acidic eutectic solvents: Experimental and COSMO-RS predictions // J. Molecular Liquids. 2021. V. 336. P. 116575.
  31. Santana A.P.R., Mora-Vargas J.A., Guimarães T.G.S., Amaral C.D.B., Oliveira A., Gonzalez M.H. Sustainable synthesis of natural deep eutectic solvents (NADES) by different methods // J. Molecular Liquids. 2019. V. 293. P. 111452.
  32. Zhu S., Xu J., Cheng H., Gao J., Jiang X., Li C., Yang W. Poly(ethylene glycol) Diacid-Based Deep Eutectic Solvent with Excellent Denitrogenation Performance and Distinctive Extractive Behavior // Energy & Fuels. 2019. V. 33. № 10. P. 10380–10388.
  33. Yao H., Yang D., Li C., Wang E. Intensification of water on the extraction of pyridine from n-hexane using ionic liquid // Chemical Engineering and Processing – Process Intensification. 2018. V. 130. P. 61–66.

© Д.В. Лобович, С.В. Соловьева, Н.А. Милевский, Ю.А. Заходяева, А.А. Вошкин, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>