Optimization of Three-Phase Extraction Processes in a Cascade of Mixing and Settling Apparatuses

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A theoretical analysis was performed of various options for organizing coupled extraction-re-extraction processes in a cascade of mixing-settling extractors: schemes in which the extractant phase passes through all stages of extraction, then through all stages of re-extraction, and schemes of the processes when the flow of this phase circulates between the stages of extraction and re-extraction in separate groups of cascade extractors (schemes of supported free liquid membranes). It has been established that supported free liquid membrane schemes provide a higher degree of extraction and better separation quality.

About the authors

A. E Kostanyan

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: kost@igic.ras.ru
Moscow, Russian Federation

D. V Lobovich

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russian Federation

Yu. A Zakhodyaeva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russian Federation

A. I Yamchuk

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russian Federation

E. M Ivannikova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russian Federation

A. A Voshkin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russian Federation

A. Yu Tsivadze

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Moscow, Russian Federation; Moscow, Russian Federation

References

  1. Галиева Ж.Н., Абрамов А.М., Соболь Ю.Б., Игумнов М.С., Геря В.О., Шулин С.С., Чижевская С.В. Разработка универсальной технологии и оборудования для разделения редкоземельных концентратов в каскадах центробежных экстракторов, освоение производства // Химическая Промышленность Сегодня. 2019. № 3. C. 54.
  2. Galieva Zh.N., Abramov A.M., Sobol Yu.B., Igumnov M.S., Gerya V.O., Shulin S.S., and Chizhevskaya S.V. Development of universal technology and equipment for the separation of rare earth concentrates in cascades of centrifugal extractors, mastering production. Chemical Industry Today. 2019, no. 3, p. 54.
  3. Jha M.K., Kumari A., Panda R., Rajesh Kumar J., Yoo K., Lee J.Y. Review on hydrometallurgical recovery of rare earth metals // Hydrometallurgy. 2016. V. 165. P. 2.
  4. Xie F., Zhang T.A., Dreisinger D., Doyle F. A critical review on solvent extraction of rare earths from aqueous solutions // Minerals Engineering. 2014. V. 56. P. 10.
  5. Chen Z., Li Z., Chen J., Kallem P., Banat F., Qiu H. Recent advances in selective separation technologies of rare earth elements: a review // Journal of Environmental Chemical Engineering. 2022. V. 10. № 1. Article number 107104.
  6. Liu Y., Jeon H.S., Lee M.S. Solvent extraction of Pr and Nd from chloride solution by the mixtures of Cyanex 272 and amine extractants // Hydrometallurgy. 2014. V. 150. P. 61.
  7. Liu Y., Jeon H.S., Lee M.S. Separation of Pr and Nd from La in chloride solution by extraction with a mixture of Cyanex 272 and Alamine 336 // Metals and Materials International. 2015. V. 21. № 5. P. 944.
  8. Radhika S., Kumar B.N., Kantam M.L., Reddy B.R. Liquid–liquid extraction and separation possibilities of heavy and light rare-earths from phosphoric acid solutions with acidic organophosphorus reagents // Separation and Purification Technology. 2010. V. 75. № 3. P. 295.
  9. Zhang F., Wu W., Dai J., Bian X. Extraction and separation of Pr(III)/Ce(III) from chloride medium by 2-ethylhexylphosphonic acid mono-(2-ethylhexyl) ester in the presence of two complexing agents // Separation Science and Technology. 2016. V. 51. № 5. P. 778.
  10. Wang Y., Liao W., Li D. A solvent extraction process with mixture of CA12 and Cyanex272 for the preparation of high purity yttrium oxide from rare earth ores // Separation and Purification Technology. 2011. V. 82. P. 197.
  11. Kozhevnikova A.V., Milevskii N.A., Lobovich D.V., Zakhodyaeva Y.A., Voshkin A.A. Deep eutectic solvent (TOPO/D2EHPA/Menthol) for extracting metals from synthetic hydrochloric acid leachates of NMC-LTO batteries // Metals. 2024. V. 14. № 12. Article number 1441.
  12. Kozhevnikova A.V., Lobovich D.V., Milevskii N.A., Fedulov I.S., Zakhodyaeva Y.A., Voshkin A.A. Kinetics and reusability of hydrophobic eutectic solvents in continuous extraction processes in a pilot setting // Processes. 2024. V. 12. № 12. Article number 2879.
  13. Kostanian A.E. Staged versions of liquid membrane extraction processes // Solvent Extraction and Ion Exchange. 2013. V. 31. No. 3. P. 297.
  14. Kostanyan A.E. Comparison between various schemes of three-phase extraction: mass transfer between two liquid phases through an exchange medium // Theor. Found. Chem. Eng. 1999. V. 33. № 6. P. 584.
  15. Kostanyan A.E., Belova V.V., Zakhodyaeva Y.A., Voshkin A.A. Extraction of copper from sulfuric acid solutions based on pseudo-liquid membrane technology // Membranes. 2023. Vol. 13. № 4. P. 418.
  16. Milevskii N.A., Lobovich D.V., Milevskaya A.V., Zakhodyaeva Y.A., Voshkin A.A. The use of hydrophobic deep eutectic solvent dodecanoic acid/menthol as a sustainable diluent for the continuous extraction process of Fe and Ti separation // Hydrometallurgy. 2025. V. 236. Article number 106526.
  17. Kostanyan A.E., Voshkin A.A., Belova V.V., Zakhodyaeva Y.A. Modelling and comparative analysis of different methods of liquid membrane separations // Membranes. 2023. V. 13. № 6. P. 554.
  18. Altin S., Yildirim Y., Altin A. Transport of silver ions through a flat-sheet supported liquid membrane // Hydrometallurgy. 2010. V. 103. № 1. P. 144.
  19. Jean E., Villemin D., Hlaibi M., Lebrun L. Heavy metal ions extraction using new supported liquid membranes containing ionic liquid as carrier // Separation and Purification Technology. 2018. V. 201. P. 1.
  20. Naim M.M., Moneer A.A., Elewa M.M., El-Shafei A.A. Desalination using modified configuration of supported liquid membrane with enhancement of mass transfer of NaCl // Water Science and Technology. 2019. V. 79. № 1. P. 175.
  21. Zante G., Boltoeva M., Masmoudi A., Barillon R., Trébouet D. Supported ionic liquid and polymer inclusion membranes for metal separation // Separation & Purification Reviews. 2022. V. 51. № 1. P. 100.
  22. Amini M., Rahbar-Kelishami A., Alipour M., Vahidi O. Supported liquid membrane in metal ion separation: an overview // Journal of Membrane Science and Research. 2018. V. 4. № 3. P. 121.
  23. León G., Hidalgo A.M., Miguel B., Guzmán M.A. Pertraction of Co(II) through novel ultrasound prepared supported liquid membranes containing D2EHPA. Optimization and transport parameters // Membranes. 2020. V. 10. № 12. P. 436.
  24. Agreda D., Díaz I., López F., Alguacil F. Supported liquid membranes technologies in metals removal from liquid effluents // Revista de Metalurgia. 2011. V. 47.
  25. León G., Gómez E., Miguel B., Hidalgo A.M., Gómez M., Murcia M.D., Guzmán M.A. Feasibility of adsorption kinetic models to study carrier-mediated transport of heavy metal ions in emulsion liquid membranes // Membranes. 2022. V. 12. № 1. P. 66.
  26. Zhu G., Wang Y., Huang Q., Zhang R., Chen D., Wang S., Yang X. Emulsion liquid membrane for simultaneous extraction and separation of copper from nickel in ammoniacal solutions // Minerals Engineering. 2022. V. 188. Article number 107849.
  27. León L., León G., Senent J., Pérez-Sirvent C. Optimization of copper removal from aqueous solutions using emulsion liquid membranes with benzoylacetone as a carrier // Metals. 2017. V. 7. № 1. P. 19.
  28. Ahmad A.L., Shafie Z.M.H.M., Zaulkiflee N.D., Pang W.Y. Preliminary study of emulsion liquid membrane formulation on acetaminophen removal from the aqueous phase // Membranes. 2019. V. 9. № 10. P. 133.
  29. León G., Guzmán M.A. Kinetic study of the effect of carrier and stripping agent concentrations on the facilitated transport of cobalt through bulk liquid membranes: Desalination and the Environment // Desalination. 2005. V. 184. № 1. P. 79.
  30. León G., Guzmán M.A. Facilitated transport of copper through bulk liquid membranes containing different carriers: compared kinetic study: European Desalination Society and Center for Research and Technology Hellas (CERTH), Sani Resort 22–25 April 2007, Halkidiki, Greece // Desalination. 2008. V. 223. № 1. P. 330.
  31. Yang X.J., Gu Z.M., Fane A.G. Multicomponent separation by a combined extraction/electrostatic pseudo-liquid membrane (II): extraction and group separation of rare earths from simulated rare earth ore leach solutions // Hydrometallurgy. 1999. V. 53. № 1. P. 19.
  32. Kujawa J., Al Gharabli S., Szymczyk A., Terzyk A.P., Boncel S., Knozowska K., Li G., Kujawski W. On membrane-based approaches for rare earths separation and extraction – Recent developments // Coordination Chemistry Reviews. 2023. V. 493. Article number. 215340.
  33. Dmitrieva E.S., Anokhina T.S., Tsebrikova G.S., He T., Baulin V.E., Volkov A.V., Tsivadze A.Yu. Membrane methods of isolation and separation of rare earth elements (A Review) // Petroleum Chemistry. 2025. V. 65. № 2. P. 113.
  34. Kostanyan A.E., Belova V.V., Voshkin A.A. Three- and multi-phase extraction as a tool for the implementation of liquid membrane separation methods in practice // Membranes. 2022. V. 12. № 10. P. 926.
  35. Kostanyan A.E., Lobovich D.V., Zakhodyaeva Y.A., Tsivadze A.Yu., Voshkin A.A. Multistage three-phase extraction as a tool for application of deep eutectic solvents in non-ferrous metals separation processes // Chemical Engineering Research and Design. 2025. V. 214. P. 339.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).