Energy-Saving Schemes for Extractive Distillation of Raw Methylal

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The separation of crude methylal by extractive distillation with dimethylformamide in schemes of various structures is considered. Based on two schemes consisting of two-outlet columns, four schemes including columns with a side section and five schemes including columns with side withdrawal were synthesized using the graph method. The optimal parameters of all schemes were determined according to the criterion of minimum total energy consumption in column boilers. It was found that the scheme consisting of an extractive distillation column with side stream withdrawal in the liquid phase below the extractive section, a methanol separation column, and a separating agent regeneration column is characterized by the minimum energy consumption (311.5 kW).

About the authors

D. A Ramochnikov

MIREA – Russian Technological University (Lomonosov Moscow State University of Fine Chemical Technologies)

Moscow, Russian Federation

E. A Anokhina

MIREA – Russian Technological University (Lomonosov Moscow State University of Fine Chemical Technologies)

Email: anokhina.ea@mail.ru
Moscow, Russian Federation

M. A Pukhaev

MIREA – Russian Technological University (Lomonosov Moscow State University of Fine Chemical Technologies)

Moscow, Russian Federation

A. V Timoshenko

MIREA – Russian Technological University (Lomonosov Moscow State University of Fine Chemical Technologies)

Moscow, Russian Federation

References

  1. Гайле А.А., Сомов В.Е. Процессы разделения и очистки продуктов переработки нефти и газа. СПб.: Химиздат, 2012.
  2. Gaile A.A. and Somov, V.E. Processes of separation and purification of oil and gas processing products. St. Petersburg: Khimizdat, 2012. (In Russ.)
  3. Шевляков Ф.Б., Руднев Н.А., Терещенко Н.В. Повышение энергоэффективности экстрактивной ректификации при выделении изопрена // Нефтегазовое дело. 2022. № 6. С. 214.
  4. Shevlyakov F.B., Rudnev N.A., and Tereshchenko N.V. Improving the energy efficiency of extractive rectification in the isolation of isoprene. Oil and Gas Business. 2022, no. 6, p. 214. (In Russ.)
  5. Тельнова Т.Е., Челюскина Т.В. Оценка возможности разделения смеси отходов производства винилхлорида по сбалансированной схеме с использованием различных разделяющих агентов // Химия и технология органических веществ. 2023. № 4 (28). С. 44.
  6. Telnova T.E. and Chelyuskina T.V. Assessment of the possibility of separating a mixture of vinyl chloride production waste using a balanced scheme with various separating agents. Chemistry and Technology of Organic Substances. 2023, no. 4, (28). p. 44. (In Russ.)
  7. Рыжкин Д.А., Раева В.М. Сравнение селективных агентов при ректификационном разделении смеси метанол – этанол – вода // ТОХТ. 2024. Т. 58. №2. С. 211.
  8. Ryzhkin D.A. and Raeva V.M. Comparison of selective agents in the rectification separation of a methanol-ethanol-water mixture. TOHT. 2024, vol. 58, no. 2, p. 211. (In Russ.)
  9. Челюскина Т.В., Колгушкин Д.Я., Бедретдинов Ф.Н. Сравнение экстрактивных агентов для разделения смеси пропионовая кислота – бутилбутират // Химия и технология органических веществ. 2024. № 4 (32). С. 22.
  10. Chelyuskin T.V., Kolgushkin D.Ya., and Bedretdinov F.N. Comparison of extractive agents for separating propionic acid–butyl butyrate mixtures. Chemistry and Technology of Organic Substances. 2024, no. 4, (32), p. 22. (In Russ.)
  11. Rodriguez-Donis I., Shcherbakova N., Parascandolo E., Abildskov J., Gerbaud V. Entrainer selection using the Infinitely Sharp Split method and thermodynamic criteria for separating binary minimum-boiling azeotrope by extractive distillation // Chem. Eng. Res. Des. 2024. V. 205. P. 443.
  12. Xu Zh., Wang Y., Li J., Wu H., Pan J., Ye Q. Multi-criteria decision analysis of entrainers screening on the extractive distillation process for separating ternary mixtures based on multi-objective optimization // Chem. Eng. Res. Des. 2025. V. 218. P. 376.
  13. Baek S.H., Kim T.H., Kang J.W. An entrainer selection method based on thermodynamic considerations for the purification of methyl benzoate via extractive distillation // Sep. Purif. Technol. 2025. V. 375. P. 133653.
  14. De Figueirêdo M.F., Guedes B.P., Araújo J.M.M., Vasconcelos L.G.S., Brito R.P. Optimal design of extractive distillation columns – A systematic procedure using a process simulator // Chem. Eng. Res. Des. 2011. V. 89. P. 341.
  15. De Figueirêdo M.F., Brito K.D., Wagner B.R., Vasconcelos L.G.S., Brito R.P. Optimization of the design and operation of extractive distillation process // Sep. Sci. Technol. 2015. V. 50. P. 2238.
  16. Sánchez-Ramírez E., Zhang Y., Yang A., Kong Z.Y., Segovia-Hernández J.G., Sunarso J. Integrating sustainability metrics to the design of extractive distillation for ternary azeotropic mixtures of ethanol, tetrahydrofuran, and methanol separation // Chem. Eng. Res. Des. 2023. V. 200. P. 58.
  17. You Ch.-X., Zhou C., Shi H., Tang J., Cui M., Qiao X., Xia M. Energy-saving extractive distillation system using o-xylene as an entrainer for the high-purity separation of dimethyl carbonate/methanol azeotrope // Sep. Purif. Technol. 2024. V. 350. P. 127893.
  18. Wang H., Pan J., Li J., Xu Zh., Zhang R., Dai T., Ye Q. Feasibility exploration and performance assessment of extractive distillation processes for separation of different high concentration feed compositions based on multi-objective optimization // Sep. Purif. Technol. 2025. V. 366. P. 132818.
  19. Адриан Т., Хилл Т., Киндлер К., Хайда Б. Способ непрерывного разделения С4-фракции: пат. 2319684 Российская Федерация № 2005105045/04; заявл. 22.07.2003; опубл.20.08.2008.
  20. Adrian T., Hill T., Kindler K., and Haida B. Method for continuous separation of C4 fraction: patent 2319684 of the Russian Federation No. 2005105045/04; filed July 22, 2003; published August 20, 2008, Bulletin No. 23, 12 p.
  21. Wang Y., Wang S., Shan B., Ma Y., Xu Q., Wang Y., Cui P., Zhang F. Sustainable process design and multi-objective optimization of efficient and energy-saving separation of xylene isomers via extractive distillation based on double extractants // Sep. Purif. Technol. 2025. V. 354. P. 128899.
  22. Feng Z., Zhang J., Leng J., Fan S., Wan Q., Dong L. Enhancing economic, exergy efficiency and environment of extractive distillation processes via integrating two-enthalpy-feed and vapor recompression heat pump // Sep. Purif. Technol. 2025. V. 360. P. 130950.
  23. Duan C., Li Ch. Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation: Part II-process integration // Sep. Purif. Technol. 2025. V. 360. P. 131009.
  24. Zhang Zh., Wang J., Zhu K., Li S., Li M., Fan X., Gao J. An efficient heat-pump extractive distillation process for recovering lower alcohols from bioethanol fusel oil // Chem. Eng. Process. - Process Intensif. 2025. V. 213. P. 110291.
  25. Wu T., Wang Ch., Liu J., Zhuang Y., Du J. Design and 4E analysis of heat pump-assisted extractive distillation processes with preconcentration for recovering ethyl-acetate and ethanol from wastewater // Chem. Eng. Res. Des. 2024. V. 201. P. 510.
  26. Pan J., Ding Y., Li J., Xie L., Xu Zh., Wu H., Ye Q. Economic, entropy generation and environmental analysis of separation of high-concentration azeotropic mixtures by an innovative extractive distillation configuration based on multi-objective optimization // Sep. Purif. Technol. 2025. V. 340. P. 126729.
  27. Wu Q., Wang Zh., Xu W., Xin L., Hu R., Zhu Zh., Wang Y., Cui P. Innovative extractive distillation process combining preconcentration and solvent recovery functions for efficiently separating diisopropyl ether/ isopropanol/water // Sep. Purif. Technol. 2025. V. 360. P. 131021.
  28. Крупинова О.Н., Жучков В.И., Фролкова А.К. Синтез и дискриминация технологических схем разделения реакционной смеси производства метилтретбутилового эфира // Теорет. основы хим. технол. 2015. Т. 49. № 3. С. 295.
  29. Krupinova O.N., Zhuchkov V.I., and Frolkova A.K. Synthesis and discrimination of technological schemes for separating the reaction mixture in the production of methyl tert-butyl ether. Theoretical Foundations of Chemical Technology. 2015, vol. 49, no. 3, p. 295. (In Russ.)
  30. Анохина Е.А., Грачева И.М., Акишин А.Ю., Тимошенко А.В. Разделение смеси ацетон-хлороформ-н-бутанол с применением экстрактивной ректификации в схемах из двухотборных колонн // Тонкие хим. технол. 2017. Т. 12. № 5. С. 34.
  31. Anokhina E.A., Gracheva I.M., Akishin A.Yu., and Timoshenko, A.V. Separation of acetone-chloroform-n-butanol mixture using extractive rectification in two-stage column schemes. Fine Chemical Technology. 2017, vol. 12, no. 5, p. 34. (In Russ.)
  32. Раева В.М., Дубровский А.М. Сравнение схем экстрактивной ректификации смесей метанол-тетрагидрофуран-вода // Тонкие хим. технол. 2020. Т.15. № 3. С. 21.
  33. Raeva V.M. and Dubrovsky A.M. Comparison of extractive rectification schemes for methanol-tetrahydrofuran-water mixtures. Fine Chemical Technology. 2020, vol. 15, no. 3, p. 21.
  34. Гаганов И.С., Белим С.С., Фролкова А.В., Фролкова А.К. Разработка схем разделения смеси получения фенола на основе анализа диаграмм фазового равновесия // Теорет. основы хим. технол. 2023. Т. 57. № 1. С. 38.
  35. Gaganov I.S., Belim S.S., Frolkova A.V., and Frolkova A.K. Development of separation schemes for phenol production mixtures based on phase equilibrium diagram analysis. Theoretical Foundations of Chemical Technology. 2023, vol. 57, no. 1, p. 38.
  36. Жучков В.И., Рыжкин Д.А., Раева В.М. Экстрактивная ректификация смеси тетрагидрофуран–ацетонитрил–хлороформ // Теорет. основы хим. технол. 2023. Т. 57. № 1. С. 125.
  37. Zhuchkov V.I., Ryzhkin D.A., and Raeva V.M. Extractive rectification of a tetrahydrofuran–acetonitrile–chloroform mixture. Theoretical Foundations of Chemical Technology. 2023, vol. 57, no. 1, p. 125.
  38. Фролкова А.В., Фролкова А.К., Гаганов И.С. Комбинирование специальных приемов при разработке схем разделения смеси метанол + вода + метилметакрилат // Хим. технол. 2023. Т. 24. № 8. С. 314.
  39. Frolkova A.V., Frolkova A.K., and Gaganov I.S. Combining special techniques in the development of separation schemes for methanol + water + methyl methacrylate mixtures. Chem. Technol. 2023, vol. 24, no. 8, p. 314.
  40. Кочарян С.О., Рудаков Д.Г., Тимошенко А.В. Энергетическая эффективность сложной колонны при разделении продуктов пиролиза в зависимости от состава питания // Тонкие хим. технол. 2017. Т. 12. № 3. С. 33.
  41. Kocharyan S.O., Rudakov D.G., and Timoshenko A.V. Energy efficiency of a complex column in the separation of pyrolysis products depending on the feed composition. Fine Chem. Technol. 2017, vol. 12, no. 3, p. 33.
  42. Рудаков Д.Г., Афаунов А.А., Анохина Е.А., Тимошенко А.В. Применение сложной колонны в процессе ректификации метанола-сырца // Хим. технол. 2018. Т. 19. № 7. С. 329.
  43. Rudakov D.G., Afaunov A.A., Anokhina E.A., and Timoshenko A.V. Application of a complex column in the rectification of crude methanol. Chem. Technol. 2018, vol. 19, no. 7, p. 329.
  44. Тимошенко А.В., Анохина Е.А., Кочарян С.О., Рудаков Д.Г. Энергосберегающие технологии ректификации легких углеводородов на основе использования комплексов со связанными потоками // Научный журнал российского газового общества. 2020. № 1 (24). С. 38.
  45. Timoshenko A.V., Anokhina E.A., Kocharyan S.O., and Rudakov D.G. Energy-saving technologies for the rectification of light hydrocarbons based on the use of complexes with bound flows. Scientific Journal of the Russian Gas Society. 2020, no. 1, (24). p. 38.
  46. Timoshenko A.V., Patkina O.D., Serafimov L.A. Synthesis of optimal distillation flowsheets consisting of columns with various numbers of sections// Theor. Found. Chem. Eng. 2001. V. 35. № 5. P. 458.
  47. Timoshenko A.V., Serafimov L.A. Flowsheet synthesis strategy for irreversible zeotropic distillation // Theor. Found. Chem. Eng. 2001. V. 35. № 6. P. 567.
  48. Тимошенко А.В., Серафимов Л.А. Графометрия как метод системного анализа поливариантности организации технологических схем ректификационного разделения // Теор. основы хим. технол. 1997. Т. 31. № 5. С.527.
  49. Timoshenko A.V. and Serafimov L.A. Graphometry as a method of systematic analysis of polyvariability in the organization of technological schemes for rectification separation. Theor. Found. Chem. Eng. 1997, vol. 31, no. 5, p. 527. (In Russ.)
  50. Timoshenko A.V., Serafimov L.A. Flowsheet synthesis for distillation of multicomponent mixtures with one binary azeotrope // Theor. Found. Chem. Eng. 1999. V. 33. No 1. P. 41.
  51. Timoshenko A.V., Anokhina E.A., Ivanova L.V. Extractive distillation systems involving complex columns with partially coupled heat and material flows // Theor. Found. Chem. Eng. 2005. V. 39. No 5. P. 463.
  52. Timoshenko A.V., Morgunov A.V., Anokhina E.A. Flowsheet synthesis for the extractive distillation of azeotropic mixtures in systems consisting of columns with partially coupled heat and material flows // Theor. Found. Chem. Eng. 2007. V. 41. No 6. P. 845.
  53. Ivanova L.V, Timoshenko A.V., Timofeev V.S. Synthesis of flowsheets for extractive distillation of azeotropic mixtures // Theor. Found. Chem. Eng. 2005. V. 39. No 1. P. 16.
  54. Timoshenko A.V., Anokhina E.А., Morgunov А.V., and Rudakov D.G. Application of the partially thermally coupled distillation flowsheets for the extractive distillation of ternary azeotropic mixtures // Chem. Eng. Res. Des. 2015. V. 104. P. 139.
  55. Anokhina E., Timoshenko A. Criterion of the energy effectiveness of extractive distillation in the partially thermally coupled columns // Chem. Eng. Res. Des. 2015. V. 99. P. 165.
  56. Анохина Е.А. Экстрактивная ректификация в комплексах с частично связанными тепловыми и материальными потоками: дис. … д-ра техн. наук. – М.: МИРЭА – Российский технологический университет, 2020.
  57. Anokhina E.A. Extractive rectification in complexes with partially coupled heat and material flows: Thesis ... Doctor of Technical Sciences. – M.: MIREA – Russian Technological University, 2020.
  58. Anokhina E.A., Berdibekova S.A., Timoshenko A.V. Energy saving schemes for separation of benzene-cyclohexane-toluene mixture with different initial compositions by extractive distillation // Chem. Eng. Trans. 2018. V. 69. P. 871.
  59. Anokhina E.A., Timoshenko A.V., Akishin A.Yu., Remizova A.V. Benzene purification from thiophene using dimethylformamide as an entrainer in thermally coupled extractive distillation columns // Chem. Eng. Res. Des. 2019. V. 146. P. 391.
  60. Анохина Е.А., Якутин Р.И., Тимошенко А.В. Очистка бензола от тиофена экстрактивной ректификацией с применением колонн с боковым отбором в паровой фазе // Теорет. основы хим. технол. 2021. Т. 55. № 5. С. 578.
  61. Anokhina E.A., Yakutin R.I., and Timoshenko A.V. Purification of benzene from thiophene by extractive rectification using columns with side sampling in the vapor phase. Theoretical Foundations of Chemical Technology. 2021, vol. 55, no. 5, p. 578. (In Russ.)
  62. Rudakov D.G., Kharlamov C.M., Klauzner P.S., Anokhina E.A., Timoshenko A.V. Extractive distillation of tetrahydrofuran–ethyl acetate–water mixture in schemes including columns with side sections and side draws// Fine Chem. Technol. 2025. V. 20. No 2. P. 95.
  63. Торубаров А.И., Епифанова О.А., Глухан Е.Н., Семин А.В. Разработка способа очистки технического метилаля // Химия и технология органических веществ. 2018. Т. 4. № 8. С.14.
  64. Torubarov A.I., Epifanova O.A., Glukhan E.N., and Semin A.V. Development of a method for purifying technical methyl alcohol. Chemistry and Technology of Organic Substances. 2018, vol. 4, no. 8, p. 14. (In Russ.)
  65. Albert M. Hahnenstein, I. Hasse H. Maurer G.J. Vapor-Liquid and Liquid-Liquid Equilibria in Binary and Ternary Mixtures of Water, Methanol, and Methylal // J. Chem. Eng. Data. 2001. V. 46. P. 897.
  66. Bittrich H.-J. Fleischer W.J. Vapor-Liquid Equilibrium in the Methanol + Dimethyl Formamide System // Prakt. Chem. 1963. V. 20. P. 151.
  67. Misheneva I.N., Smirnov V.V., Saraev B.A., Pavlov S.Yu. Liquid-vapor phase equilibrium in systems formed by dimethylformamide, isoprene dimers, and water // Prom-st Sint. Kauch. 1978. № 10. P. 2.
  68. Kojima, K., Tochigi, K., Seki, H., Kagaku K. Determination of vapor-liquid equilibrium from boiling point curve // J. Chem. Eng. 1968. V. 32. P. 149.
  69. Огородников С.К., Лестева Т.М., Коган Б.В. Азеотропные смеси. Справочник под ред. проф. В.Б. Когана. Л.: Химия, 1971.
  70. Ogorodnikov S.K., Lesteva T.M., and Kogan B.V. Azeotropic mixtures. Reference book. Edited by Prof. V.B. Kogan. L.: Chemistry, 1971. (In Russ.)
  71. Серафимов Л.А. Термодинамико-топологический анализ диаграмм гетерогенного равновесия многокомпонентных смесей // Журн. физ. химии. 2002. Т. 76. № 8. С. 1351.
  72. Serafimov L.A. Thermodynamic-topological analysis of heterogeneous equilibrium diagrams of multicomponent mixtures. Journal of Physical Chemistry. 2002, vol. 76, no. 8, p. 1351. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).