Экстракция Li(I), Al(III) и Fe(III) из солянокислых растворов гидрофобным эвтектическим растворителем ТБФС/ментол

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Предложен новый гидрофобный эвтектический растворитель на основе триизобутилфосфин сульфида (ТБФС) и ментола, изучены его основные физико-химические свойства, и проведена оценка его экстракционной способности по отношению к ионам Fe(III), Al(III) и Li(I). Для системы ТБФС/ментол построена диаграмма состояния “твердое тело – жидкость”, и установлено взаимодействие между компонентами в эвтектическом растворителе с использованием ИК- и ЯМР-спектроскопии. Установлены температурные зависимости динамической вязкости, плотности и показателя преломления предложенного растворителя. Изучена экстракция ионов Fe(III), Al(III) и Li(I) из солянокислых растворов ТБФС/ментол в зависимости от концентрации HCl и NaCl, объемного соотношения фаз, исходной концентрации металла. Получены температурные зависимости степени извлечения ионов металлов, и проведена оценка термодинамических параметров экстракции. Определены показатели реэкстракции ионов Fe(III) из органической фазы дистиллированной водой, установлена его степень извлечения при многократном использовании эвтектического растворителя. Показана перспективность использования предложенного гидрофобного эвтектического растворителя для выделения металлов из водных растворов.

About the authors

И. В. Зиновьева

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Author for correspondence.
Email: yz@igic.ras.ru
Russian Federation, Москва

А. М. Саломатин

Институт общей и неорганической химии им. Н.С. Курнакова РАН; Национальный исследовательский университет “Высшая школа экономики”

Email: yz@igic.ras.ru
Russian Federation, Москва; Москва

Ю. А. Заходяева

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: yz@igic.ras.ru
Russian Federation, Москва

А. А. Вошкин

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: yz@igic.ras.ru
Russian Federation, Москва

References

  1. Saju D., Ebenezer J., Chandran N., Chandrasekaran N. Recycling of lithium iron phosphate cathode materials from spent lithium-ion batteries: a mini-review // Ind. Eng. Chem. Res. 2023. V. 62. P. 11768–11783.
  2. Padhi A.K., Nanjundaswamy K.S., Goodenough J.B. Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries // J. Electrochem. Soc. 1997. V. 144. P. 1188–1194.
  3. Miao Y., Hynan P., von Jouanne A., Yokochi A. Current Li-Ion battery technologies in electric vehicles and opportunities for advancements // Energies (Basel). 2019. V. 12. P. 1074.
  4. Harper G., Sommerville R., Kendrick E., Driscoll L., Slater P., Stolkin R. et al. Recycling Lithium-Ion batteries from electric vehicles // Nature. 2019. V. 575. P. 75–86.
  5. Ordoñez J., Gago E.J., Girard A. Processes and Technologies for the recycling and recovery of spent Lithium-Ion batteries // Renewable and Sustainable Energy Reviews. 2016. V. 60. P. 195–205.
  6. Forte F., Pietrantonio M., Pucciarmati S., Puzone M., Fontana D. Lithium Iron Phosphate batteries recycling: an assessment of current status // Crit. Rev. Environ. Sci. Technol. 2021. V. 51. P. 2232–2259.
  7. Wang W., Wu Y. An overview of recycling and treatment of spent LiFePO 4 batteries in China // Resour. Conserv. Recycl. 2017. V. 127. P. 233–243.
  8. Narbutt, J. Fundamentals of Solvent Extraction of Metal Ions. In Liquid-Phase Extraction; Elsevier, 2020; P. 121–155.
  9. Liu, C.; Cao, Y.; Sun, W.; Zhang, T.; Wu, H.; Liu, Q.; Rao, Z.; Gu, Y. Highly Efficient Lithium-Ion Battery Cathode Material Recycling Using Deep Eutectic Solvent Based Nanofluids. RSC Sustainability 2023, 1, 270–281, doi: 10.1039/D2SU00047D.
  10. Zheng Q., Zeng L., Cao Z., Wu S., Li Q., Wang M. et al. A green and efficient process for the stepwise extraction of Cu, Ni, Co, Mn, and Li from Hazardous waste with a novel solvent extraction system of D2EHPA-NNPA // Green Chemistry. 2023. V. 25. P. 10020–10032.
  11. Wang K., Adidharma H., Radosz M., Wan P., Xu X., Russell C.K. et al. Recovery of rare earth elements with Ionic liquids // Green Chemistry. 2017. V. 19. P. 4469–4493.
  12. Qiao W., Zhang R., Wen Y., Wang X., Wang Z., Tang G. et al. Green solvents in battery recycling: status and challenges // J. Mater. Chem. A Mater. 2024.
  13. Zakhodyaeva Yu.A., Zinov’eva I.V. Extraction of Pt(IV) and Pd(II) from hydrochloric acid solutions using polypropylene glycol 425 // Theoret. Found. Chem. Eng. 2021. V. 55. P. 282–289.
  14. Gilmore M., McCourt É.N., Connolly F., Nockemann P., Swadźba-Kwaśny M., Holbrey J.D. Hydrophobic deep eutectic solvents incorporating trioctylphosphine oxide: advanced liquid extractants // ACS Sustain Chem. Eng. 2018. V. 6. P. 17323–17332.
  15. Wazeer I., Hizaddin H.F., Hashim M.A., Hadj-Kali M.K. An overview about the extraction of heavy metals and other critical pollutants from contaminated water via hydrophobic deep eutectic solvents // J. Environ. Chem. Eng. 2022. V. 10. P. 108574.
  16. Kozhevnikova A.V., Zinov’eva I.V., Zakhodyaeva Y.A., Baranovskaya V.B., Voshkin A.A. application of hydrophobic deep eutectic solvents in extraction of metals from real solutions obtained by leaching cathodes from end-of-life Li-Ion batteries // Processes. 2022. V. 10. P. 2671.
  17. Drogobuzhskaya S., Frolova M., Shishov A., Tsvetov N. Comparison of extraction abilities of deep eutectic solvents and aqueous acid solutions for extraction of rare earths and transition metals // J. Rare Earths. 2023.
  18. van Osch D.J.G.P., Zubeir L.F., van den Bruinhorst A., Rocha M.A.A., Kroon M.C. Hydrophobic deep eutectic solvents as water-immiscible extractants // Green Chemistry. 2015. V. 7. P. 4518–4521.
  19. Tereshatov E.E., Boltoeva M. Yu., Folden C.M. First evidence of metal transfer into hydrophobic deep eutectic and low-transition-temperature mixtures: indium extraction from hydrochloric and oxalic acids // Green Chemistry. 2016. V. 18. P. 4616–4622.
  20. van Osch D.J.G.P., Parmentier D., Dietz C.H.J.T., van den Bruinhorst A., Tuinier R., Kroon M.C. Removal of alkali and transition metal ions from water with hydrophobic deep eutectic solvents // Chemical Communications. 2016. V. 52. P. 11987–11990.
  21. Hanada T., Goto M. Synergistic deep eutectic solvents for lithium extraction // ACS Sustain. Chem. Eng. 2021. V. 9. P. 2152–2160.
  22. Francis T., Prasada Rao T., Reddy M.L.P. Cyanex 471X as extractant for the recovery of Hg(II) from industrial wastes // Hydrometallurgy. 2000. V. 57. P. 263–268.
  23. Martínez S., Navarro P., Sastre A.M., Alguacil F.J. The solvent extraction system Au(III) – HCl-Cyanex 471X // Hydrometallurgy. 1996. V. 43. P. 1–12.
  24. Kozhevnikova A.V., Milevskii N.A., Zinov’eva I.V., Zakhodyaeva Yu.A., Voshkin A.A. A flow-chart for processing of a lithium-manganese battery using hdes aliquat 336/menthol // Theor. Found. Chem. Eng. 2022. V. 56. P. 650–654.
  25. Kozhevnikova A.V., Uvarova E.S., Lobovich D.V., Milevskii N.A., Zakhodyaeva Yu.A., Voshkin A.A. Extraction of Ti(IV) ions from chloride solutions with the aliquat 336–menthol hydrophobic deep eutectic solvent // Theor. Found. Chem. Eng. 2023. V. 57. P. 1261–1267.
  26. White A.H., Bishop W.S. Dielectric evidence of molecular rotation in the crystals of certain non-aromatic compounds // J. Am. Chem. Soc. 1940. V. 62. P. 8–16.
  27. Olushola S.A., Folahan A.A., Alafara A.B., Bhekumusa J.X., Olalekan S.F. Application of cyanex extractant in cobalt/nickel separation process by solvent extraction // Int. J. Phys. Sci. 2013. V. 8. P. 89–97.
  28. Abranches D.O., Coutinho J.A.P. everything you wanted to know about deep eutectic solvents but were afraid to be told // Annu. Rev. Chem. Biomol. Eng. 2023. V. 14. P. 141–163.
  29. Schaeffer N., Martins M.A.R., Neves C.M.S.S., Pinho S.P., Coutinho J.A.P. Sustainable Hydrophobic Terpene-Based Eutectic Solvents for the Extraction and Separation of Metals. Chemical Communications 2018, 54, 8104–8107, doi: 10.1039/C8CC04152K.
  30. Lemaoui T., Darwish A.S., Attoui, A., Abu Hatab F., Hammoudi N.E.H., Benguerba Y., Vega L.F., Alnashef I.M. Predicting the Density and Viscosity of Hydrophobic Eutectic Solvents: Towards the Development of Sustainable Solvents. Green Chemistry 2020, 22, 8511–8530, doi: 10.1039/D0GC03077E.
  31. Zinov’eva I. V., Kozhevnikova A. V., Milevskii N.A., Zakhodyaeva Y.A., Voshkin A.A. New Hydrophobic Eutectic Solvent Based on Bis(2,4,4-Trimethylpentyl)Phosphinic Acid and Menthol: Properties and Application. In Proceedings of the ECP 2023; MDPI: Basel Switzerland, May 17 2023; p. 68.
  32. Bishimbayeva G.K., Gusarova N.K., Nalibayeva A.M., Verkhoturova S.I., Bold A., Chernysheva N.A. et al. Synthesis and properties of sulfur-containing organophosphorus extractants based on red phosphorus, alkyl bromides, and elemental sulfur // Materials. 2023. V. 16. P. 3394.
  33. Milevskii N.A., Zinov’eva I.V., Kozhevnikova A.V., Zakhodyaeva Y.A., Voshkin A.A. Sm/Co magnetic materials: a recycling strategy using modifiable hydrophobic deep eutectic solvents based on trioctylphosphine oxide // Int. J. Mol. Sci. 2023. V. 24. P. 14032.
  34. Sahu S., Mohanty A., Devi N. Application of various extractants for liquid-liquid extraction of lithium // Mater. Today Proc. 2023. V. 76. P. 190–193.
  35. Bezdomnikov A.A., Kostikova G.V., Baulin D.V., Tsivadze A. Yu. Liquid extraction of lithium using a mixture of alkyl salicylate and tri-n-octylphosphine oxide // Sep. Purif. Technol. 2023. V. 320. P. 124137.
  36. Milevskii N.A., Zinov’eva I.V., Zakhodyaeva Yu.A., Voshkin A.A. Separation of Li(I), Co(II), Ni(II), Mn(II), and Fe(III) from hydrochloric acid solution using a menthol-based hydrophobic deep eutectic solvent // Hydrometallurgy. 2022. V. 207. P. 105777.
  37. Rout A., Binnemans K. Liquid–Liquid extraction of europium(III) and other trivalent rare-earth ions using a non-fluorinated functionalized ionic liquid // Dalton Trans. 2014. V. 43. P. 1862–1872.
  38. Cueva Sola A.B., Parhi P.K., Lee J.-Y., Kang H.N., Jyothi R.K. Environmentally friendly approach to recover vanadium and tungsten from spent SCR catalyst leach liquors using aliquat 336 // RSC Adv. 2020. V. 10. P. 19736–19746.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies