Parametric Analysis of a Mathematical Model of a Catalytic Oscillator

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In some cases, a reaction in the oscillatory mode has a higher selectivity for the target product. To organize production in this mode, it is necessary to determine the conditions under which fluctuations occur, as well as to consider the very nature of the fluctuations. In this work, a parametric analysis of the basic kinetic model of an oscillatory reaction without autocatalysis was made. The boundaries of the parameters at which the system oscillates were found. Phase portraits of the system and bifurcation curves were constructed. Stationary states of the system were analyzed. The type and number of stationary states were identified. It was shown that the system at certain parameters has three stationary states: two unstable nodes and a saddle. Parametric analysis of basic models will allow selecting initial approximations for calculations of more complex models of real reactions.

About the authors

A. Ya. Naimov

MIREA—Russian Technological University

Email: alexandermitht@gmail.com
119454, Moscow, Russia

S. L. Nazanskii

MIREA—Russian Technological University

Email: alexandermitht@gmail.com
119454, Moscow, Russia

V. I. Bykov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: alexandermitht@gmail.com
119334, Moscow, Russia

References

  1. Bykov V., Tsybenova S., Yablonsky G. Chemical Complexity via Simple Models. De Gruyter Graduate, 2018
  2. Gray C., An analysis of the Belousov-Zhabotinskii reaction // Rose-Hulman Undergrad. Math. 2002. V. 3. P. 1.
  3. Kurin-Csörgei K., Epstein I.R., Orbán M. et al. Systematic design of chemical oscillators using complexation and precipitation equilibria // Nature. 2005. V. 433. P. 139.
  4. Novakovic K., Bruk L., Temkin O. History, versatility and future prospects of oscillatory carbonylation reactions of alkynes // RSC Advances. 2021. V. 11(39). P. 24336.
  5. Parker J., Novakovic K. The Effect of Temperature on Selectivity in the Oscillatory Mode of the Phenylacetylene Oxidative Carbonylation Reaction // ChemPhysChem. 2017. V. 18(15). 1981–1986 (2017)
  6. Наимов А.Я., Быков В.И. Параметрический анализ базовой кинетической модели, содержащей автокатализ // Эл. сб. тр. Первая научно-техническая конференция Московского технологического университета. М., 2016. С. 682
  7. Вольтер Б.В., Сальников И.Е. Устойчивость режимов работы химических реакторов. 2-е изд., перераб. и доп. М.: Химия, 1981.
  8. Слинько М.Г. Некоторые пути развития методов моделирования химических процессов и реакторов // Теорет. основы хим. технологии. 1976. Т. 10. № 2. C. 171.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (57KB)
3.

Download (49KB)
4.

Download (71KB)
5.

Download (54KB)
6.

Download (37KB)
7.

Download (67KB)
8.

Download (85KB)
9.

Download (73KB)
10.

Download (179KB)

Copyright (c) 2023 А.Я. Наимов, С.Л. Назанский, В.И. Быков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies