Digital Twins for the Porous Structures of Aerogels with the Use of the Cellular Automation Approach and Bezier Curves

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, a cellular automation model developed on the basis of Bezier curves with the use of a cellular automation approach for the creation of digital twins for porous nanostructures of different nature is proposed. Some numerical experiments on the creation of digital twins for the synthesized experimental samples of chitosan-based aerogels are carried out. The structural characteristics of the digital copies and experimental samples are compared, allowing us to conclude that the model is correct. The resulting digital twins can be used for predicting the properties of porous fiber materials, in particular, chitosan-based aerogels, to provide the partial replacement of real experiments by computational ones and, consequently, to decrease the expenditures on the development of new materials with specified properties.

About the authors

I. V. Lebedev

Mendeleev Russian University of Chemical Technology

Email: chemcom@muctr.ru
125047, Moscow, Russia

S. I. Ivanov

Mendeleev Russian University of Chemical Technology

Email: chemcom@muctr.ru
125047, Moscow, Russia

R. R. Safarov

Mendeleev Russian University of Chemical Technology

Email: chemcom@muctr.ru
125047, Moscow, Russia

N. V. Men’shutina

Mendeleev Russian University of Chemical Technology

Author for correspondence.
Email: chemcom@muctr.ru
125047, Moscow, Russia

References

  1. Svyetlichnyy D.S. A three-dimensional frontal cellular automaton model for simulation of microstructure evolution—initial microstructure module // Model. Simul. Mater. Sci. Eng. 2014. V. 22. № 8. P. 085001.
  2. Krivovichev S.V. Algorithmic crystal chemistry: A cellular automata approach // Crystallogr. Rep. 2012. V. 57. № 1. P. 10–17.
  3. Kimber J.A., Kazarian S.G., Štěpánek F. Microstructure-based mathematical modelling and spectroscopic imaging of tablet dissolution // Comput. Chem. Eng. 2011. V. 35. № 7. P. 1328–1339.
  4. Pérez-Brokate C.F., di Caprio D., Féron D., De Lamare J., Chaussé A. 2014. Overview of Cellular Automaton Models for Corrosion. In Cellular Automata, ed J. Wąs, G.Ch. Sirakoulis, S. Bandini. 8751: 187–96. Cham: Springer International Publishing.
  5. Gurikov P., Kolnoochenko A., Golubchikov M., Menshutina N., Smirnova I. A synchronous cellular automaton model of mass transport in porous media // Comput. Chem. Eng. 2016. V. 84. P. 446–457.
  6. Brouwers H.J.H., de Korte A.C.J. Multi-cycle and multi-scale cellular automata for hydration simulation (of Portland-cement) // Comput. Mater. Sci. 2016. V. 111. P. 116–124.
  7. Bullard J.W. 2008. A Determination of Hydration Mechanisms for Tricalcium Silicate Using a Kinetic Cellular Automaton Model // J. Am. Ceram. Soc. 2008. V. 91. № 7. P. 2088–2097.
  8. Bonchev D., Thomas S., Apte A., Kier L.B. Cellular automata modelling of biomolecular networks dynamics // SAR QSAR Environ. Res. 2010. V. 21. № 1–2. P. 77–102.
  9. Menshutina N., Kolnoochenko A., Lebedev A. Cellular Automata in Chemistry and Chemical Engineering // Annual Review of Chemical and Biomolecular Engineering. 2019. V. 10. P. 325–345.
  10. Бандман О.Л. Клеточно-автоматные модели пространственной динамики // Системная информатика. 2006. Т. 10. С. 59–113.
  11. Бандман О.Л. Метод построения клеточно-автоматных моделей процессов формирования устойчивых структур // Прикладная дискретная математика. 2010. № 4(10).
  12. Lis M., Pintal L., Swiatek J., Cwiklik L. GPU-Based Massive Parallel Kawasaki Kinetics in the Dynamic Monte Carlo Simulations of Lipid Nanodomains // J. Chem. Theory Comput. 2012. V. 8(11). № 65. 4758 p.
  13. Lee H.W., Im Y.-T. Cellular Automata Modeling of Grain Coarsening and Refinement during the Dynamic Recrystallization of Pure Copper // Mater. Trans. 2010. V. 51. № 10. P. 1614–1620.
  14. Gandin Ch.-A., Rappaz M. A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes. Acta Metall. Mater. 1994. V. 42 № 7. P. 2233–2246.
  15. Miller W., Succi S., Mansutti D. Lattice Boltzmann Model for Anisotropic Liquid-Solid Phase Transition // Phys. Rev. Lett. 2001. V. 86. № 16. P. 3578–3581.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (149KB)
3.

Download (351KB)
4.

Download (24KB)
5.

Download (659KB)
6.

Download (157KB)
7.

Download (917KB)

Copyright (c) 2023 И.В. Лебедев, С.И. Иванов, Р.Р. Сафаров, Н.В. Меньшутина

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».