Evaluation of the Efficiency of the Separation of Dust–Gas Flows in Uniflow Cyclones

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A model was proposed for determining the efficiency of fractional separation in a uniflow cyclone. The model includes parameters that characterize the motion of a particle in the cyclone and, hence, the degree of separation, namely, the distance that the particle travels when moving in a helical path, and this path itself. The separation efficiency in a uniflow cyclone of a new design was experimentally studied. The experiments were carried out with quartz flour of four particle size fractions: 15, 20, 30, and 50 μm. The efficiency of the cyclone in the separation of small particles was high for apparatuses of this type. The separation efficiency curves were analyzed.

About the authors

V. S. Toptalov

St. Petersburg State Institute of Technology (Technical University)

Email: ixumuk@mail.ru
190013, St. Petersburg, Russia

Yu. G. Chesnokov

St. Petersburg State Institute of Technology (Technical University)

Email: ixumuk@mail.ru
190013, St. Petersburg, Russia

V. P. Meshalkin

St. Petersburg State Institute of Technology (Technical University); Mendeleev University of Chemical Technology of Russia

Email: ixumuk@mail.ru
190013, St. Petersburg, Russia; 125047, Moscow, Russia

N. N. Kulov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: ixumuk@mail.ru
119991, Moscow, Russia

O. M. Flisyuk

St. Petersburg State Institute of Technology (Technical University)

Email: ixumuk@mail.ru
190013, St. Petersburg, Russia

N. A. Martsulevich

St. Petersburg State Institute of Technology (Technical University)

Email: ixumuk@mail.ru
190013, St. Petersburg, Russia

I. G. Likhachev

St. Petersburg State Institute of Technology (Technical University)

Author for correspondence.
Email: ixumuk@mail.ru
190013, St. Petersburg, Russia

References

  1. Мешалкин В.П. Введение в проектирование энергосберегающих химико-технологических систем. М.: РХТУ им. Д.И. Менделеева, 2020.
  2. Long Huang, Songsheng Deng, Zhi Chen, Jinfa Guan, Ming Chen. Numerical analysis of a novel gas-liquid pre-separation cyclone // Separation and Purification Technology. 2018. V. 194. P. 470–479. https://doi.org/10.1016/j.seppur.2017.11.066
  3. Zheng-Wei Zhang, Qing Li, Yan-Hong Zhang, Hua-Lin Wang. Simulation and experimental study of effect of vortex finder structural parameters on cyclone separator performance // Separation and Purification Technology. 2022. V. 286. 120394. https://doi.org/10.1016/j.seppur.2021.120394
  4. Mohamadali Mirzaei et al. A hybrid multiphase model accounting for particle agglomeration for coarse-grid simulation of dense solid flow inside large-scale cyclones // Powder Technology. 2022. V. 399. 117186. https://doi.org/10.1016/j.powtec.2022.117186
  5. Jianfei Song, Yaodong Wei, Guogang Sun, Jianyi Chen. Experimental and CFD study of particle deposition on the outer surface of vortex finder of a cyclone separator // Chemical Engineering J. 2017. V. 309. P. 249–262. https://doi.org/10.1016/j.cej.2016.10.019
  6. Асламова В.С., Асламов А.А., Ляпустин П.К., Мусева Т.Н., Брагин Н.А. Прямоточный циклон для производства минеральной ваты // Экология и промышленность России. 2007. № 6. С. 26–27.
  7. Lingzi Wang, Biyuan Liu, Jianmei Feng, Xueyuan Peng. Experimental study on the separation performance of a novel oil–gas cyclone separator // Powder Technology. 2023. V. 415. 118124. https://doi.org/10.1016/j.powtec.2022.118124
  8. Ik-Hyun An, Chang-Hoon Lee, Jun-Hyung Lim, Hyo-Young Lee, Se-Jin Yook. Development of a miniature cyclone separator operating at low Reynolds numbers as a pre-separator for portable black carbon monitors // Advanced Powder Technology. 2021. V. 32. I. 12. P. 4779–4787. https://doi.org/10.1016/j.apt.2021.10.027
  9. Guoyin Yu, Sijie Dong, Linna Yang, Di Yan, Kejun Dong, Yi Wei, Bo Wang. Experimental and numerical studies on a new double-stage tandem-nesting cyclone // Chem. Eng. Sci. 2021. V. 236. https://doi.org/10.1016/j.ces.2021.116537
  10. Турубаев Р.Р., Шваб А.В. Численное исследование аэродинамики закрученного потока в вихревой камере комбинированного пневматического аппарата // Вестник Томского государственного университета. Математика и механика. 2017. № 47. С. 87–98. https://doi.org/10.17223/19988621/47/9
  11. Николаев А.Н., Харьков В.В. Описание профилей окружной и осевой компонент скорости в полом вихревом аппарате // Вестник Казанского технологического университета. 2016. № 17. С. 71–74.
  12. Chengming Song, Binbin Pei, Mengting Jiang, Bo Wang, Delong Xu, Yanxin Chen. Numerical analysis of forces exerted on particles in cyclone separators // Powder Technology. 2016. V. 294. P. 437–448. https://doi.org/10.1016/j.powtec.2016.02.052
  13. Seiyed E., Ghasemi M., Vatani D.D., Ganji. Efficient approaches of determining the motion of a spherical particle in a swirling fluid flow using weighted residual methods // Particuology. 2015. V. 23. P. 68–74. https://doi.org/10.1016/j.partic.2014.12.008
  14. Wenbin Li, Feng Wu, Liuyun Xu, Jipeng Sun, Xiaoxun Ma. CFD-DEM investigation of gas–solid swirling flow in an industrial-scale annular pipe // Chinese Journal of Chemical Engineering. V. 461. 141975. https://doi.org/10.1016/j.cjche.2023.03.011
  15. Zhanghao Wan, Shiliang Yang, Duzuo Tang, Haibin Yuan, Jianhang Hu, Hua Wang. Particle-scale modeling study of coaxial jets of gas-solid swirling flow in an industrial-scale annular pipe via CFD-DEM // Powder Technology. V. 419. 118307. https://doi.org/10.1016/j.powtec.2023.118307
  16. Wenbin Li, Feng Wu, Liuyun Xu, Jipeng Sun, Xiaoxun Ma. Numerical and experimental study on the particle erosion and gas–particle hydrodynamics in an integral multi-jet swirling spout-fluidized bed // Chinese J. Chemical Engineering. 2023. 159655. https://doi.org/10.1016/j.cjche.2023.03.011
  17. Ma L., Ingham D.B., Wen X. Numerical modelling of the fluid and particle penetration through small sampling cyclones // J. Aerosol Sci. 2004. V. 31. P. 1097–1119.
  18. Francisco José de Souza, Ricardo de Vasconcelos Salvo, Diego Alves de Moro Martins. Large eddy simulation of the gas–particle flow in cyclone separators // Sep. Purif. Technol. 2012. V. 94. P. 61–70. https://doi.org/10.1016/j.seppur.2012.04.006
  19. Wang B., Xu D.L., Chu K.W., Yu. A.B. Numerical study of gas–solid flow in a cyclone separator // Appl. Math. Model. 2006. V. 30 P. 1326–1342. https://doi.org/10.1016/j.apm.2006.03.011
  20. Wang B., Yu A.B. Numerical study of the gas–liquid–solid flow in hydrocyclones with different configuration of vortex finder // Chem. Eng. J. 2008. V. 135. P. 33–42. https://doi.org/10.1016/j.cej.2007.04.009
  21. Xiaodong Li, Jianhua Yan, Yuchun Cao, Mingjiang Ni, Kefa Cen. Numerical simulation of the effects of turbulence intensity and boundary layer on separation efficiency in a cyclone separator // Chem. Eng. J. 2003. V. 95. P. 235–240. https://doi.org/10.1016/S1385-8947(03)00109-8
  22. Cui J., Chen X., Gong X., Yu. G. Numerical study of gas–solid flow in a radial-inlet structure cyclone separator // Ind. Eng. Chem. Res. 2010. V. 49. P. 5450–5460. https://doi.org/10.1016/j.apm.2006.03.011
  23. Флисюк О.М., Топталов В.С., Марцулевич Н.А., Муратов О.В. Прямоточный циклон. Пат. 195672U1 РФ 2020.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (120KB)
3.

Download (23KB)
4.

Download (24KB)
5.

Download (22KB)
6.

Download (207KB)
7.

Download (67KB)

Copyright (c) 2023 В.С. Топталов, Ю.Г. Чесноков, В.П. Мешалкин, Н.Н. Кулов, О.М. Флисюк, Н.А. Марцулевич, И.Г. Лихачев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies