A Fractal Analysis of the Effect of Titanium Dioxides on the Biological Properties of Bioinorganic Composite Materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study is devoted to the problem of creating environmentally friendly materials by using a new generation of composites based on biodegradable biocompatible polymer matrices with the possibility of long-term controlled targeted release of nutrients and bioprotective substances. A technique and an algorithm for using fractal analysis to assess the biological properties of the chitosan–titanium-dioxide composite, which is a bioinorganic composite material used in agriculture to produce highly effective complex fertilizers, is developed. The developed algorithm differs from analogues in the use of skeletons for calculating the fractal dimension of microphotographs. The fractal and mechanical properties of organic/inorganic films of the bioinorganic chitosan–titanium-dioxide composite material are studied. The obtained results are essential for assessing the characteristics of the bioinorganic composite material, such as the biodegradability, biocompatibility, and environmental safety, which are important for environmental protection. The existence of a relationship between the coefficients of asymmetry and kurtosis of the fractal dimension of the chitosan film microphotographs and the percentage of titanium dioxide in them is established. The results of studying the mechanical properties of the films of the chitosan–titanium-dioxide composite allow one to conclude that titanium dioxide impurities have an effect on the strength of the films.

About the authors

V. P. Meshalkin

Mendeleev Russian University of Chemical Technology; Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: butusov-1@mail.ru
Moscow, Russia; Moscow, Russia

O. B. Butusov

Mendeleev Russian University of Chemical Technology; Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: butusov-1@mail.ru
Moscow, Russia; Moscow, Russia

A. G. Kolmakov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: butusov-1@mail.ru
Moscow, Russia

M. A. Sevost’yanov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: butusov-1@mail.ru
Moscow, Russia

T. B. Chistyakova

St. Petersburg State Institute of Technology (Technical University)

Author for correspondence.
Email: butusov-1@mail.ru
St. Petersburg, Russia

References

  1. Valeriy P. Meshalkin, Vincenzo G. Dovì, Vladimir I. Bobkov et al. State of the art and research development prospects of energy and resource-efficient environmentally safe chemical process systems engineering // Mendeleev Communications. 2021. V. 31. P. 593–604.
  2. Meshalkin V.P., Butusov O.B., Reverberi Andrea, Kolmakov A.G., Sevostyanov M.A., Garabadzhiu A.V., Alexandrova A.G. Multifractal Analysis of the Mechanical Properties of the Texture of Biopolymer-Inorganic Composites of Chitosan-Silicon Dioxide. Energies 2022. V. 15. Iss. 19. 7147–7163. https://doi.org/10.3390/en15197147
  3. Павлов А.Н., Анищенко В.С. Мультифрактальный анализ сложных сигналов // Успехи физических наук. 2007. Т. 177. № 8. С. 859–876.
  4. Саркисов П.Д., Бутусов О.Б., Мешалкин В.П., Севастьянов В.Г., Галаев А.Б. Компьютерный метод анализа текстуры нанокомпозитов на основе расчета изолиний фрактальных размерностей // Теоретические основы химической технологии. 2010. Т. 44. № 6. С. 620–625.
  5. Kozlov G.V., Yanovskii Yu.G. Fractal Mechanics of Polymers: Chemistry and Physics of Complex Polymeric Materials. Toronto, New Jersy: Apple Academic Press, 2015. 372 p.
  6. Колоколова А.Ю., Тарасюк В.Т., Курбанова М.Н., Ильин А.А. Изучение антимикробных свойств модифицированных полимерных материалов // Вестник ВГУ 2019. Серия: Химия. Биология. Фармация. № 1. С. 12–19.
  7. Озерин А.Н., Павлова-Веревкина О.Б., Зеленский А.Н., Аконова Т.А., Озерина Л.А., Сурин Н.М., Кечекьян А.С. Нанокомпозиты на основе модифицированного хитозана и окида титана // Высокомолекулярные соединения. 2006. Серия А. Т. 48. № 6. С 983–989.
  8. Тюкова И.С., Суворова А.И., Окунева А.И., Шишкин Е.И. Получение и структура органо-неорганических гибридных пленок хитозан-оксид кремния // Высокомолекулярные соединения. 2010. Сер. Б. Т. 52. № 9. С. 1702–1709.
  9. Янагисава К., Овенстон Дж. Кристаллизация анатаза из аморфного диоксида титана гидротермальным методом: влияние исходного материала и температуры // J. Phys. Chem. В. 1999. Т. 103. С. 7781–7787.
  10. Кроновер Р.М. Фракталы и хаос в динамических системах. Основы теории. М.: Пост маркет, 2000. 352 с.
  11. Stojić T., Reljin I., Reljin B. Adaptation of multifractal analysis to segmentation of microcalcifications in digital mammograms // Physica A: Statistical Mechanics and its Applications. 2006. V. 367. P. 494–508.
  12. Mukundan R., Hemsley A. Tissue Image Classification Using Multi-Fractal Spectra // International J Multimedia Data Engineering and Management (IJMDEM). 2010. V. 1. P. 62–75.
  13. Reljin I.S., Reljin B.D. Fractal geometry and multifractals in analyzing and processing medical data and images // Archive of Oncology. 2002. V. 10. P. 283–293.
  14. Кантюков Р.А. Мультифрактальный анализ изображений турбулентных газовых потоков в газопроводах // Прикладная информатика. 2016. Т. 11. № 4(64). С. 42–56.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (24KB)
3.

Download (45KB)
4.

Download (1MB)
5.

Download (115KB)
6.

Download (62KB)
7.

Download (61KB)

Copyright (c) 2023 В.П. Мешалкин, О.Б. Бутусов, А.Г. Колмаков, М.А. Севостьянов, Т.Б. Чистякова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies