Removal of Tritium from Gas Flows from Working Areas of Nuclear Facilities

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Some methods were considered to remove tritium-containing hydrogen compounds from various gas flows from scientific and production facilities in the nuclear and thermonuclear power industry. The possibilities of tritium removal from a gas flow in the form of hydrogen were analyzed, and it was concluded that these methods can be applied at low flow rates of the gas being purified. At high gas flow rates, the main detritiation methods are adsorption and water phase isotope exchange. Both these methods include the preliminary catalytic oxidation of tritium-containing molecules to water with the further removal of tritiated water from the gas. The main technological parameters of these methods were compared, and it was inferred that phase isotope exchange has great advantages.

About the authors

M. B. Rozenkevich

D. Mendeleev University of Chemical Technology of Russia

Email: rozenkevich.m.b@muctr.ru
125047, Moscow, Russia

N. N. Kulov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: rozenkevich.m.b@muctr.ru
119991, Moscow, Russia

Yu. S. Pak

D. Mendeleev University of Chemical Technology of Russia

Email: rozenkevich.m.b@muctr.ru
125047, Moscow, Russia

A. N. Bukin

D. Mendeleev University of Chemical Technology of Russia

Email: rozenkevich.m.b@muctr.ru
125047, Moscow, Russia

V. S. Moseeva

D. Mendeleev University of Chemical Technology of Russia

Email: rozenkevich.m.b@muctr.ru
125047, Moscow, Russia

S. A. Marunich

D. Mendeleev University of Chemical Technology of Russia

Author for correspondence.
Email: rozenkevich.m.b@muctr.ru
125047, Moscow, Russia

References

  1. Corcoran V.J. et al. New containment box for tritium operations //Fusion Technology. 1995. V. 28. № 3. P. 1321–1326
  2. Санитарные правила и нормативы СанПиН 2.6.1.2523–09 НОРМЫ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ НРБ–99/2009. М.: Роспотребнадзор. 2009. 73 с.
  3. Перевезенцев А.Н. и др. “Гидриды интерметаллических соединений и сплавов, их свойства и применение в атомной технике” // Физика элементарных частиц и атомного ядра. 1988. Т. 19. С. 1386–1439.
  4. Перевезенцев А.Н., Розенкевич М.Б. Технология трития для термоядерного реактора. 2019Б Долгопрудный, ИД “Интеллект”, 336 с.
  5. Perevezentsev A.N. et al. Safety Aspects of Tritium Storage in Metal Hydride Form// Fusion Technology. 1995. V. 28. P. 1404–1409.
  6. Glugla M., Penzhorn R.-D. Development of fusion fuel cycle technology at the Tritium Laboratory Karlsruhe: the experiment CAPRICE // Fusion Engineering and Design. 1995. V. 28. P. 348–356.
  7. Session K. Processing tritiated water at the Savanna River Site:a production- scale demonstrationof a palladium membrane reactor // Fusion Science and Technology. 2005. V. 48. P. 91–96.
  8. Iwai Ya. et al. Experimental evaluation of tritium oxidation efficiency in the room temperature recombiner // Fusion Engineering and Design. 2018. V. 136. P. 120–124.
  9. Yu. Edao et al. Tritium oxidation test by platinum-alumina catalyst under moisture and hydrocarbons atmosphere // Fusion Engineering and Design. 2018. V. 136. P. 319–323.
  10. Гаспарян М.Д. и др. Керамические высокопористые блочно-ячеистые катализаторы окисления изотопов водорода с нанесенным платиновым активным слоем // Огнеупоры и техническая керамика. 2014. № 7–8. С. 49–54.
  11. Гаспарян М.Д. и др. Применение керамических высокопористых блочно-ячеистых катализаторов с нанесенным палладиевым активным слоем в процессе окисления водорода // Стекло и керамика. 2014. № 11. С. 22–25.
  12. Ivanova A.S. et al. Safety of Air Detritiation System Operation // Fusion Science and Technology. 2019. V. 75. P. 24–35.
  13. Edao Yu. et al. Effect of hydrocarbons on the efficiency of catalytic reactor of detritiation system in an event of fire // J. Nuclear Science and Technology. 2016. V. 53. P. 1831–1838.
  14. Willms R.S. et al. Mathematical comparison of three tritium system effluent HTO cleanup systems // Fusion Science and Technology. 2002. V. 41. P. 974–980.
  15. Sabathier F. et al. Assessment of the performance of the JET Enhauste Detritiation System // Fusion Engineering and Design. 2001. V. 54. P. 547–553.
  16. ASHRAE Handbook Fundamentals (SI). Chapter 6. Psychrometrics. P. 6.1–6.17.
  17. Malara C. et al. Evaluation and matagation of tririum memory in detritiation druers // J. Nuclear Materials. 1999. V. 273. P. 203–212.
  18. Allsop P.J. et al. The effects of residual tritium on air-detritiation dryer performance // Fusion Technology. 1992. V. 21. P. 599–603.
  19. Stork D. et al. Systems for the safe operation of the JET tokamak with tritium // Fusion Engineering and Design. 1999. V. 47. P. 131–172.
  20. Андреев Б.М., Зельвенский Я.Д., Катальников С.Г. Тяжелые изотопы водорода в ядерной технгике. М., ИздАТ, 2000, 344 с.
  21. Magomedbekov E.P. et al. Current State of Rtsearch in the Field of Deytiation of Technologycal Water Flows: A Review // Theoretical Foundation of Chemical Engineering. 2021. V. 55. P. 1111–1125.
  22. Магомедбеков Э.П. и др. Массообменнныет характеристики спирально-прихматической насадки в колоннах изотопного обмена при ректификации воды под вакуумом // Теоретические основы химической технологии. 2016. Т. 50. С. 502–507.
  23. Магомедбеков Э.П. и др. Массообменнныет характеристики регулярной рулонной ленточно-винтовой насадки в колоннах изотопного обмена при ректификации воды под вакуумом // Теоретические основы химической технологии. 2016. Т. 50. С. 408–413.
  24. Perevezentsev A.N. et al. Wet Scrubber Column for Air Detritiation // Fusion Science and Technology. 2009. V. 56. P. 1455–1461.
  25. Perevezentsev A.N. et al. Wet scrubber technology for trutium confinement at ITER // Fusion Engineering and Design. 2010. V. 85. P. 1206–1210.
  26. Rozenkevich M.B. et al. Main Features of the Technology for Air Detritiation in Scrubber Column // Fusion Science and Technology. 2016. V. 70. P. 435–447.
  27. Perevezentsev A.N. et al. Phase Isotope Exchange of Water as a Gas Detritiation Method / /Theoretical Foundation of Chemical Engineering. 2013. V. 47. P. 47–54.
  28. Hayashi T. et al. R@D of atmosphere detritiation system for ITER in JAEA // Fusion Engineering and Design. 2010. V. 85 P. 1386–1390.
  29. Iwai Ya. et al. Basic concept of JA DEMO fuel cycle // Fusion Engineering and Design. 2021. V. 166. 112261
  30. Марунич С.А. et al. Эффективность массообмена в процессе фазового изотопного обмена воды с целью детритизации воздуха на регулярной и спирально-призматической насадке // Химическая технология. 2010. № 12. С. 761–764
  31. Розенкевич М.Б., Магомедбеков Э.П. Пути решения газовых выбросов трития // Безопасность окружающей среды. 2009. № 1. С. 90–93.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (47KB)
3.

Download (44KB)
4.

Download (24KB)

Copyright (c) 2023 М.Б. Розенкевич, Н.Н. Кулов, Ю.С. Пак, А.Н. Букин, В.С. Мосеева, С.А. Марунич

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies