Concentration Distribution of Molecules and Other Species in the Model System Fe–NaCl–Na2S–H2SO4–H2O at Various Temperatures of the Electrocoagulation Process

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Under practical conditions, one of the possible solutions to the problem of treatment of hydrogen-sulfide-containing industrial wastewater is the electrochemical oxidation of sulfides. In this work, the model system Fe–NaCl–Na2S–H2SO4–H2O is considered, an experimental setup is constructed, and the electrocoagulation process is studied in a wide (288–308 K) range of temperatures of an aqueous solution of hydrogen sulfide. The optimal ratios between the initial components in the system are determined. The experimental and calculated pH of the solution are found. The system is thermodynamically modeled by minimizing the Gibbs energy, and the concentration distribution of individual molecules and other species (cations, anions) in the solution is characterized. Possible chemical reactions in the system Fe–NaCl–Na2S–H2SO4–H2O during the electrocoagulation of hydrogen-sulfide-containing wastewater are identified. Eh–pH diagrams are constructed to compare the redox potentials of the systems Fe–H2O, Fe–H2O–S, and Fe–NaCl–Na2S–H2SO4–H2O based on the determined concentrations of iron- and sulfur-containing particles in the solution. A calculation formula for the redox potential Eh of the system is obtained.

About the authors

Z. K. Maimekov

Kyrgyz–Turkish University Manas

Email: zarlyk.maymekov@manas.edu.kg
720042, Bishkek, Kyrgyz Republic

D. A. Sambaeva

Razzakov Kyrgyz State Technical University

Email: zarlyk.maymekov@manas.edu.kg
720044, Bishkek, Kyrgyz Republic

Zh. B. Izakov

Kyrgyz–Turkish University Manas

Email: zarlyk.maymekov@manas.edu.kg
720042, Bishkek, Kyrgyz Republic

N. T. Shaikieva

Kyrgyz–Turkish University Manas

Email: zarlyk.maymekov@manas.edu.kg
720042, Bishkek, Kyrgyz Republic

M. Dolaz

Kyrgyz–Turkish University Manas

Email: zarlyk.maymekov@manas.edu.kg
720042, Bishkek, Kyrgyz Republic

M. Kobya

Kyrgyz–Turkish University Manas

Author for correspondence.
Email: zarlyk.maymekov@manas.edu.kg
720042, Bishkek, Kyrgyz Republic

References

  1. Lin H.W., Kustermans C., Vaiopoulou E., Prevoteau A., Rabaey Yuan K., Pikaar I. Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewers // Water Res. 2017. V. 118. P. 114.
  2. Murugananthan M., Raju G.B., Prabhakar S. Removal of sulfide, sulfate and sulfite ions by electrocoagulation // J. Hazard. Mater. 2004. V. 109. № 1–3. P. 37.
  3. Pikaar I., Rozendal R.A., Yuan Z., Keller J., Rabaey K. Electrochemical sulfide removal from synthetic and real domestic wastewater at high current densities // Water Res. 2011. V. 45. № 6. P. 2281.
  4. Omwene P.I., Celen M., Oncel M.S., Kobya M. Arsenic removal from naturally arsenic contaminated ground water by packed-bed electrocoagulator using Al and Fe scrap anodes // Process Saf. Environ. Prot. 2019. V. 121. P. 20.
  5. Фесенко Л.Н., Черкесов А.Ю., Игнатенко С.И. Методы удаления сероводорода из производственных сточных вод и пути их развития // Вода Magazine. 2016. Т. 102. № 2. С. 22.
  6. Фесенко Л.Н. Очистка воды от сероводорода с использованием электрохимических процессов. Ростов-на-Дону: СКНЦ ВШ, 2001.
  7. Meshalkin V.P. Current Theoretical and Applied Research on Energy- and Resource-Saving Highly Reliable Chemical Process Systems Engineering // Theor. Found. Chem. Eng. 2021. V. 55. № 4. P. 563. [Мешалкин В.П. Актуальные теоретические и прикладные исследования по инжинирингу энергоресурсосберегающих высоконадежных химико-технологических систем // Теор. осн. хим. технол. 2021. Т. 55. № 4. С. 399 ]
  8. Garrels R.M., Christ C.L. Solutions, minerals, and equilibria. New York: Harper & Row, 1965.
  9. Biernat R.J., Robins R.G. High-temperature potential/pH diagrams for the iron-water and iron-water-sulphur systems // Electrochim. Acta. 1972. V. 17. № 7. P. 1261.
  10. Wilhelm E., Battino R. Enthalpy and Internal Energy: Liquids, Solutions and Vapours / Eds. Wilhelm E., Letcher T.M. Royal Society of Chemistry, 2017.
  11. Чудненко К.В. Теория и программное обеспечение метода минимизации термодинамических потенциалов для решения геохимических задач. Дис. … докт. геол.-мин. наук. – Иркутск: Инст. геохимии им А.П. Виноградова СО РАН, 2007.
  12. Чудненко К.В. Термодинамическое моделирование в геохимии: теория, алгоритмы, программное обеспечение, приложения / Под ред. Шарапова В.Н. Новосибирск: Академ. Изд. Гео, 2010
  13. Авченко О.В., Чудненко К.В., Александров И.А. Физико-химическое моделирование минеральных систем: монография. Москва: Юрайт, 2018.
  14. Musov O., Savchenko M., Levchuk I., Frolova L. Thermodynamic modeling of oxygen dissolvation in water // Proc. of ONPU. 2022. V. 65. № 1. P. 90.
  15. Yokokawa H. Tables of thermodynamic properties of inorganic compounds // J. Natl. Chem. Lab. Ind. 1988. V. 305. P. 27.
  16. Thermodderm. Thermochemical and Mineralogical Tables for Geochemical Modeling. Available online: https://thermoddem.brgm.fr (accessed on 1 July 2020).
  17. Palyanova G.A., Chudnenko K.V., Zhuravkova T.V. Thermodynamic properties of solid solutions in the Ag2S–Ag2Se system // Thermochim. Acta. 2014. V. 575. P 90.
  18. Zinov’eva I.V., Kozhevnikova A.V., Milevskii N.A., Zakhodyaev Yu.A., Voshkin A.A. Liquid–Liquid Equilibrium And Extraction Capacity of the PPG 425–NaNO3–H2O System // Theor. Found. Chem. Eng. 2022. V. 56. № 4. P.417. [Зиновьева И.В., Кожевникова А.В., Милевский Н.А., Заходяева Ю.А., Вошкин А.А. Равновесие жидкость–жидкость и экстракционная способность системы ППГ425–NaNO3–H2O // Теор. осн. хим. технол. 2022. Т. 56. № 4. С. 410]
  19. Standard Methods for the Examination of Water and Wastewater. 21st Edition / Eds. Eaton A.D., Clesceri L.S., Rice E.W., Greenberg A.E., Franson M.A.H. Washington DC: Amer. Public. Health Assn. 2005.
  20. Karpov I.K., Chudnenko K.V., Kulik D.A., Bychinski V.A. The convex programming minimization of five thermodynamic potentials other than Gibbs energy in geochemical modeling // Am. J. Sci. 2002. V. 302. № 4. P. 281.
  21. Karpov I.K., Chudnenko K.V., Kulik D.A. Modeling chemical mass transfer in geochemical processes; thermodynamic relations, conditions of equilibria and numerical algorithms // Am. J. Sci. 1997. V. 297. № 8. P. 767.
  22. Kulov N.N., Ochkin A.V. Method for Calculating the Density of Mixed Solutions of Strong Electrolytes // Theor. Found. Chem. Eng. 2020. V. 54. № 6. P. 1223. [Кулов Н.Н., Очкин А.В. Метод расчета плотности смешанных растворов сильных электролитов // Теор. осн. хим. технол. 2020. Т. 54. № 6. С. 714]
  23. Ochkin A.V., Kulov N.N. Comparison of the Molar Volumes of Some Electrolytes // Theor. Found. Chem. Eng. 2022. V. 56. № 5. P. 644. [Очкин А.В., Кулов Н.Н. Сравнение мольных объемов некоторых электролитов // Теор. осн. хим. технол. 2022. Т. 56. № 5. С. 512].
  24. Sambaeva D., Izakov J., Maymekov T., Kemelov K., Shaykieva N., Ukeleeva A., Maymekov Z. The Impact of road salts on groundwater and estimation of the chlorine ions by hydrogen index // Pol. J. Environ. Stud. 2022. V. 31. № 2. P. 1327.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (961KB)
3.

Download (35KB)
4.

Download (278KB)
5.

Download (339KB)

Copyright (c) 2023 З.К. Маймеков, Д.А. Самбаева, Ж.Б. Изаков, Н.Т. Шайкиева, М. Долаз, М. Кобья

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies