Simulation of Purification of Lower Olefins in Pyrogas from Acetylene Hydrocarbons on Nickel Polymetallic Catalysts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The kinetics of the reactions of selective hydrogenation of acetylenic hydrocarbons in ethane–ethylene and propane–propylene fractions (EEF and PPF) of pyrogas on a polymetallic nickel catalyst promoted with group I, III, IV, and VI metals is studied. The dimensions of the cylindrical granules used in the catalytic studies are 2 mm diameter and 10 mm length. The nickel content in the catalyst is less than 32 wt %. The kinetic experiments are carried out in a laboratory flow reactor 2 cm in diameter with a reaction-zone length of 20 cm and a bench reactor with an inner tube diameter of 3.2 cm and a reaction-zone length of 600 cm. Experimental conditions were varied as: feed flow rate of 2000–42000 h–1, reaction-zone temperature 330–410 K, pressure 1–30 atm, and hydrogen : acetylenic hydrocarbon molar ratio 2–10. A staged two-route mechanism for the reaction of hydrogenation of acetylenic hydrocarbons is proposed and a kinetic model corresponding to it is derived. A total of 80 experiments are carried out on laboratory and bench installations. The kinetic model constants and the macrokinetic constants of the bench reactor model are estimated by the nonlinear least-squares method. The correspondence of the proposed models to the experimental results is shown. The possibility of joint purification of EEF and PPF pyrogas in a single reactor with an increase in olefins in the product stream compared to the feed stream is demonstrated.

About the authors

Ею V. Pisarenko

Mendeleev Russian University of Chemical Technology

Email: evpisarenko@mail.ru
Moscow, Russia

A. B. Ponomaryov

Institute of Organoelement Compounds A.N. Nesmeyanov Russian Academy of Sciences

Email: evpisarenko@mail.ru
Moscow, Russia

V. N. Pisarenko

OOO Sinton

Email: evpisarenko@mail.ru
Moscow, Russia

N. A. Mamchenkov

Mendeleev Russian University of Chemical Technology

Email: evpisarenko@mail.ru
Moscow, Russia

L. N. Khandozhko

Mendeleev Russian University of Chemical Technology

Author for correspondence.
Email: evpisarenko@mail.ru
Moscow, Russia

References

  1. Zhao Z., Jiang J., Wang F. An economic analysis of twenty light olefin production pathways // J. Energy Chemistry. 2021. V. 56. P. 193.
  2. Zhang L., Zhou M., Wang A., Zhang T. Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms // Chem. Rev. 2020. V. 120. P. 683.
  3. Pisarenko E.V., Ponomarev A.B., Smirnov A.V., Pisarenko V.N., Shevchenko A.A. Prospects for Progress in Developing Production Processes for the Synthesis of Olefins Based on Light Alkanes // Theor. Found. Chem. Eng. 2022. V. 56. № 5. Р. 687. [Писаренко Е.В., Пономарев А.Б., Смирнов А.В., Писаренко В.Н., Шевченко А.А. Перспективы развития процессов и производств получения олефинов на основе легких алканов // Теорет. осн. хим. технологии. 2022. Т. 56. № 5. С. 559]
  4. Boulamanti A., Moya J.A. Production costs of the chemical industry in the EU and other countries: Ammonia, methanol and light olefins // Renewable and Sustainable Energy Reviews. 2017. V. 68. P. 1205.
  5. Ball M.R., Rivera-Dones K.R., Gilcher E.B., Ausman S.F. et al. AgPd and CuPd Catalysts for Selective Hydrogenation of Acetylene // ACS Catal. 2020. V. 10. P. 8567.
  6. Левин В.О., Потехин В.М., Кудимова М.В. Производство низших олефинов как базис развития газонефтехимии в России // Нефтепереработка и нефтехимия. Научно-технические достижения и передовой опыт. 2017. Т. 4. С. 28.
  7. Pisarenko E.V., Ponomaryov A.B., Ilinova A.A., Pisarenko V.N. Modeling the Process of Purifying Ethylene from Acetylene Hydrocarbons over Palladium Nanocatalysts // Theor. Found. Chem. Eng. 2020. V. 54. № 3. P. 446. [Писаренко Е.В., Пономарев А.Б., Ильинова А.А., Писаренко В.Н. Моделирование процесса очистки этилена от ацетиленовых углеводородов на палладиевых нанокатализаторах // Теорет. осн. хим. технологии. 2020. Т. 54. № 3. С. 326.]
  8. Писаренко Е.В., Пономарев А.Б., Писаренко В.Н. Исследование реакции селективного гидрирования метилацетилена в метилацетилен-пропиленовых смесях на модифицированных палладий-оксидных нанокатализаторах // Теорет. осн. хим. технологии. 2021. Т. 55. № 3. С. 309.
  9. Fu B., McCue A.J., Liu Y., Weng S. et al. Highly Selective and Stable Isolated Non-Noble Metal Atom Catalysts for Selective Hydrogenation of Acetylene // ACS Catal. 2022. V. 12. P. 607.
  10. Liu H. et al. Effect of IB-metal on Ni/SiO2 catalyst for selective hydrogenation of acetylene // Chinese J. Catalysis. 2020. V. 41. I. 7. P. 1099–1108.
  11. Chen Y., Chen J. Selective hydrogenation of acetylene on SiO2 supported Ni-In bimetallic catalysts: Promotional effect of In // Applied Surface Science. 2016. V. 387. P. 16.
  12. Xu Z., Zhou S., Zhu M. Ni catalyst supported on nitrogen-doped activated carbon for selective hydrogenation of acetylene with high concentration // Catalysis Communications. 2021. V. 149. P. 106241.
  13. Yuan Z., Kumar A., Zhou D., Feng J., Liu B., Sun X. Highly Efficient Semi-Hydrogenation of Acetylene over Ni Supported Mesoporous MgAl2O4 Spinel Derived from Aluminate-Intercalated Layered Double Hydroxide // J. Catalysis. 2022. V. 414. P. 374.
  14. Glyzdova D.V. et al. Effect of pretreatment with hydrogen on the structure and properties of carbon-supported Pd-Ag nanoalloys for ethylene production by acetylene hydrogenation // Molecular catalysis. 2021. V. 511. P. 1.
  15. Wang S. et al. High performance Pd/brass fiber catalyst for selective hydrogenation of acetylene: Effect of calcination-assisted endogenous growth of ZnO–CuOx on brass fiber // J. Catalysis. 2020. V. 382. P. 295.
  16. Bogdan V.I., Koklin A.E., Kalenchuk A.N. Kustov L.M. Hydrogenation of acetylene onto ethane-ethene mixtures over modified Pd-alumina catalysts // Mendeleev Commun. 2020. V. 30. P. 462–464.
  17. Hu M. et al. N8 stabilized single-atom Pd for highly selective hydrogenation of acetylene // J. Catalysis. 2021. V. 395. P. 46.
  18. Xu L., Hua S., Zhou J., Xu Y. et al. Anchoring Pd species over defective alumina to achieve high atomic utilization and tunable electronic structure for semi-hydrogenation of acetylene // Applied Catalysis A, General. 2022. V. 642. P. 118690.
  19. Wu Q., Shen C., Liu C.-J. Amino acid (histidine) modified Pd/SiO2 catalyst with high activity for selective hydrogenation of acetylene // Applied Surface Science. 2023. V. 607. P.154976.
  20. Liu Y. et al. Palladium phosphide nanoparticles as highly selective catalysts for the selective hydrogenation of acetylene // J. Catalysis. 2018. V. 364. P. 406.
  21. Huang W., Pyrz W., Lobo R.F., Chen J.G. Selective hydrogenation of acetylene in the presence of ethylene on K+-β-zeolite supported Pd and PdAg catalysts // Applied Catalysis A: General. 2007. V. 333. P. 254.
  22. Guo Z., Liu Y., Liu Y., Chu W. Promising SiC support for Pd catalyst in selective hydrogenation of acetylene to ethylene // Applied Surface Science. 2018. V. 442. P. 736.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (91KB)

Copyright (c) 2023 Е.В. Писаренко, А.Б. Пономарев, В.Н. Писаренко, Н.А. Мамченков, Л.Н. Хандожко

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies