Algorithm for Processing Data on the Thermophysical Properties of Phosphorites by Solving the Inverse-Coefficient Heat-Conduction Problem

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An algorithm is proposed to process experimental data to determine the thermophysical properties (specific heat capacity and thermal conductivity) of phosphorites by solving the inverse-coefficient heat-conduction problem, which reduces to programmable heating complicated by thermally activated endothermic reactions of dissociation of carbonates and control of the internal thermal state of a system with distributed parameters. Consideration is made of the problem of mathematical and computer modeling of a system for processing experimental data and generalizing the main dependences of the thermophysical properties in the operating temperature range of thermal-engineering equipment for the heat treatment of ore raw materials and the actual chemical-composition range of phosphorites. This problem is solved by solving the inverse-coefficient heat-conduction problem. The control parameters are thermal conductivity and specific heat capacity, which are the coefficients in the heat equation for a plate. The optimality criterion is the smallest deviation of the temperature distribution in the plate thickness obtained in a computational experiment from a given distribution. The optimization problem is solved by the sliding-tolerance method with optimization by the deformable-polyhedron method. The article presents the results obtained in computational experiments modeling phosphate raw materials. The obtained numerical results agree well with the results of physical experiments, which confirms the adequacy of our developed mathematical and computer models and the proposed algorithm for solving the inverse-coefficient heat-conduction problem.

About the authors

V. P. Meshalkin

Mendeleev University of Chemical Technology; Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: vovabobkoff@mail.ru
Moscow, 125047 Russia; 119991, Moscow, Russia

V. I. Bobkov

Smolensk Campus, Moscow Power Engineering Institute National Research University

Email: vovabobkoff@mail.ru
214013, Smolensk, Russia

M. I. Dli

Национальный исследовательский университет “МЭИ”

Email: vovabobkoff@mail.ru

Smolensk Campus, Moscow Power Engineering Institute National Research University

214013, Smolensk, Russia

V. A. Orekhov

Smolensk Campus, Moscow Power Engineering Institute National Research University

Email: vovabobkoff@mail.ru
214013, Smolensk, Russia

T. B. Chistyakova

St. Petersburg State Institute of Technology (Technical University

Author for correspondence.
Email: vovabobkoff@mail.ru
190013, St. Petersburg, Russia

References

  1. Meshalkin V.P., Dovì V.G., Bobkov V.I., Burukhina T.F., Khodchenko S.M. State of the art and research development prospects of energy and resource-efficient environmentally safe chemical process systems engineering // Mendeleev Communications. 2021. 31(5). P. 593–604.
  2. Цирлин А.М., Гагарина Л.Г., Балунов А.И. Синтез теплообменных систем, интегрированных с технологическим процессом // Теоретические основы химической технологии. 2021. Т. 55. № 3. С. 347–358.
  3. Егоров А.Ф., Савицкая Т.В., Михайлова П.Г. Современное состояние в области анализа, синтеза и оптимального функционирования многоассортиментных цифровых химических производств: аналитический обзор // Теоретические основы химической технологии. 2021. Т. 55. № 2. С. 154–187.
  4. Мешалкин В.П., Дли М.И., Пучков А.Ю., Бобков В.И., Казак А.С. Программное обеспечение эффективных химических технологий переработки отходов апатит-нефелиновых руд // Докл. РАН. Химия, науки о материалах. 2021. Т. 496. № 1. С. 48–54.
  5. Леонтьев Л.И., Григорович К.В., Костина М.В. Фундаментальные исследования как основа создания новых материалов и технологий в области металлургии. Часть 1 // Известия высших учебных заведений. Черная металлургия. 2018. Т. 61. № 1. С. 11–22.
  6. Борисов В.В., Курилин С.П., Луферов В.С. Нечеткие реляционные когнитивные темпоральные модели для анализа и прогнозирования состояния сложных технических систем // Прикладная информатика. 2022. Т. 17. № 1(97). С. 27–38.
  7. Bobkov V.I., Fedulov A.S., Dli M.I., Meshalkin V.P., Morgunova E.V. Scientific basis of effective energy resource use and environmentally safe processing of phosphorus-containing manufacturing waste of ore-dressing barrows and processing enterprises // Clean Technologies and Environmental Policy. 2018. T. 20. № 10. C. 2209–2221.
  8. Курилин С.П., Соколов А.М., Прокимнов Н.Н. Компьютерная программа для эксплуатационной диагностики электромеханических систем на основе топологического подхода // Прикладная информатика. 2021. Т. 16. № 4(94). С. 62–73.
  9. Meshalkin V., Bobkov V., Dli M., Dovì V. Optimization of energy and resource efficiency in a multistage drying process of phosphate pellets // Energies. 2019. T. 12. № 17. C. 3376.
  10. Мешалкин В.П., Панченко С.В., Бобков В.И., Дли М.И. Анализ теплофизических и химико-технологических свойств отходов горно-обогатительных комбинатов // Теоретические основы химической технологии. 2020. Т. 54. № 1. С. 30–37.
  11. Гуськов А.В., Гагарин П.Г., Гуськов В.Н., Тюрин А.В., Гавричев К.С. Теплоемкость и термодинамические функции твердого раствора LU2O3–2HFO2 // Докл. РАН. Химия, науки о материалах. 2021. Т. 500. № 1. С. 84–88.
  12. Гагарин П.Г., Гуськов А.В., Гуськов В.Н., Хорошилов А.В., Гавричев К.С., Иванов В.К. Теплоемкость и термическое расширение М-ортотанталата тербия // Доклады Российской академии наук. Химия, науки о материалах. 2021. Т. 499. № 1. С. 63–65.
  13. Elgharbi S., Horchani-Naifer K., Férid M. Investigation of the structural and mineralogical changes of Tunisian phosphorite during calcinations // J. Thermal Analysis and Calorimetry. 2015. V. 119. № 1. P. 265–271.
  14. Пучков А.Ю., Лобанева Е.И., Култыгин О.П. Алгоритм прогнозирования параметров системы переработки отходов апатит-нефелиновых руд // Прикладная информатика. 2022. Т. 17. № 1(97). С. 55–68.
  15. Буткарев А.А., Вербыло С.Н., Бессмертный Е.А., Буткарева Е.А. Совершенствование и практическое использование методологии ВНИИМТ для оптимизации теплотехнических схем обжиговых конвейерных машин с рабочими площадями 278, 306 и 552 м2 // Сталь. 2020. № 5. С. 7–13.
  16. Wang, S., Guo, Y., Zheng, F., Chen, F., Yang, L. Improvement of roasting and metallurgical properties of fluorine-bearing iron concentrate pellets // Powder Technology. 2020. 376. P. 126–135.
  17. Nayak D., Ray N., Dash N., Pati S., De P.S. Induration aspects of low-grade ilmenite pellets: Optimization of oxidation parameters and characterization for direct reduction application // Powder Technology. 2021. 380. P. 408–420.
  18. Belyakov N.V., Nikolina N.V. Plant protection technologies: From advanced to innovative // J. Physics: Conference Series. 2021. 1942(1). 012072.
  19. Kurilin S., Fedulov Y., Sokolov A. Scientific Substantiation of Topological Diagnostics Methods of Electrical Equipment, 2021 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2021. P. 288–293. https://doi.org/10.1109/ICIEAM51226.2021.9446356.
  20. Тураев Д.Ю., Почиталкина И.А. Теоретические и практические основы селективного извлечения фосфат-ионов из фосфатных руд с высоким содержанием примесей железа рециркуляционным методом // Теоретические основы химической технологии. 2022. Т. 56. № 2. С. 252–264.
  21. Кольцов Н.И. Линейные концентрационные и температурные законы сохранения в открытом безградиентном химическом реакторе // Теоретические основы химической технологии. 2021. Т. 55. № 2. С. 210–215.
  22. Ming Yan, Xinnan Song, Jin Tian, Xuebin Lv, Ze Zhang, Xiaoyan Yu, Shuting Zhang. Construction of a New Type of Coal Moisture Control Device Based on the Characteristic of Indirect Drying Process of Coking Coal // Energies 2020. 13(16). 4162. https://doi.org/10.3390/en13164162
  23. Tomtas P., Skwiot A., Sobiecka E., Obraniak A., Ławińska K., Olejnik T.P. Bench Tests and CFD Simulations of Liquid–Gas Phase Separation Modeling with Simultaneous Liquid Transport and Mechanical Foam Destruction // Energies 2021. 14(6). 1740. https://doi.org/10.3390/en14061740
  24. Shekhovtsov V.V., Vlasov V.A., Skripnikova N.K., Semenovykh M.A. Structure Formation of Concrete Systems Modified By Nonstandard Particles // Russian Physics J. 2021. 63(9). P. 1590–1595.
  25. Zhu X., Ji Y. A digital twin–driven method for online quality control in process industry // International J. Advanced Manufacturing Technology. 2022. 119(5–6). P. 3045–3064

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (41KB)
3.

Download (43KB)

Copyright (c) 2023 В.П. Мешалкин, В.И. Бобков, М.И. Дли, В.А. Орехов, Т.Б. Чистякова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies