


Vol 51, No 5 (2017)
- Year: 2017
- Articles: 10
- URL: https://journals.rcsi.science/0038-0946/issue/view/10395
Article
Initial analysis of ion fluxes in the magnetotail of Mars based on simultaneous measurements on Mars Express and Maven
Abstract
Simultaneous operation of two Mars satellites, equipped with instruments for the study of the plasma environment close to Mars, the European satellite Mars Express and American satellite MAVEN, allows one to investigate the influence of the interplanetary environment on the Martian magnetosphere and atmospheric losses, induced by the solar wind, for the first time, with a sufficient degree of confidence. In this paper, the data from measurements on the Mars Express satellite (MEX) of heavy ion losses are analyzed in comparison with the solar wind and magnetic field measurements on the MAVEN satellite. The main issue is the spatial structure of the escaping ion flux and the influence of the nonstationarity of the solar wind flux on the escape rate.



Structure of the current sheets in the near-Mars magnetotail. Maven observations
Abstract
During the last 15 years, the Current Sheets (CSs) have been intensively studied in the tail of the terrestrial magnetosphere, where protons are the dominated ion component. On the contrary, in the Martian magnetotail heavy ions (O+ and+0) usually dominate while the abundance of protons can be negligible. Hence it is interesting to study the spatial structure and plasma characteristics of such “oxygen” CSs. MAVEN spacecraft (s/c) currently operating on the Martian orbit with a unique set of scientific instruments allows observation of the magnetic field and three-dimensional distribution functions of various ion components and electrons with a high time resolution. In this paper, we analyse nine intervals of the CSs observed by MAVEN in the near-Mars tail at the distances from the planet ~1.5–1RM, where RM is the radius of Mars. We analyse the spatial structure of the CSs and estimate their thickness for different magnetic configurations and relative abundance of the heavy and light ions in the sheets. It is shown that, similarly to the CSs in the Earth’s magnetotail, the thickness and complexity of the spatial structure of the Maritan CSs (i.e. the presence of embedded and / or peripheral current structures) depend on the magnetic configuration of the sheets, which, in turn, affects the fraction of the quasi-adiabatic particles in the CSs.



Changes in the Martian atmosphere induced by auroral electron precipitation
Abstract
Typical auroral events in the Martian atmosphere, such as discrete and diffuse auroral emissions detected by UV spectrometers onboard ESA Mars Express and NASA MAVEN, are investigated. Auroral electron kinetic energy distribution functions and energy spectra of the upward and downward electron fluxes are obtained by electron transport calculations using the kinetic Monte Carlo model. These characteristics of auroral electron fluxes make it possible to calculate both the precipitation-induced changes in the atmosphere and the observed manifestations of auroral events on Mars. In particular, intensities of discrete and diffuse auroral emissions in the UV and visible wavelength ranges (Soret et al., 2016; Bisikalo et al., 2017; Gérard et al., 2017). For these conditions of auroral events, the analysis is carried out, and the contribution of the fluxes of precipitating electrons to the heating and ionization of the Martian atmosphere is estimated. Numerical calculations show that in the case of discrete auroral events the effect of the residual crustal magnetic field leads to a significant increase in the upward fluxes of electrons, which causes a decrease in the rates of heating and ionization of the atmospheric gas in comparison with the calculations without taking into account the residual magnetic field. It is shown that all the above-mentioned impact factors of auroral electron precipitation processes should be taken into account both in the photochemical models of the Martian atmosphere and in the interpretation of observations of the chemical composition and its variations using the ACS instrument onboard ExoMars.



An improved model of radiative transfer for the NLTE problem in the NIR bands of CO2 and CO molecules in the daytime atmosphere of Mars. 2. Population of vibrational states
Abstract
The near-infrared (NIR) emission of the Martian atmosphere in the CO2 bands at 4.3, 2.7, 2.0, 1.6, 1.4, 1.3, 1.2, and 1.05 µm and in the CO bands at 4.7, 2.3, 1.6, and 1.2 µm is mainly generated under nonlocal thermodynamic equilibrium (NLTE) conditions for vibrational states, the transitions from which form the specified bands. The paper presents the results of simulations of the population of these states under NLTE for daytime conditions. In the cold high-latitude troposphere, the NLTE takes place much lower than in the troposphere under typical temperature conditions. If the NIR-radiation reflection from the surface is ignored, the population of high vibrational states substantially decreases, at least, in some layer of the lower atmosphere. However, inelastic collisions of CO2 and CO molecules with O atoms produce no considerable influence on the values of populations. The population of vibrational states, the transitions from which form NIR bands, is also almost insensitive to possible large values of the quenching-in-collision rate constants of vibrational states higher than CO2(0001). However, very large errors in the estimates of the population of vibrational states of the CO2 molecule (rather than the CO molecule!) can be caused by the uncertainty in the values of the rate constant of exchange between CO2 molecules by the energy quantum of the asymmetric stretching vibrational mode. For this intermolecular exchange, we recommend a possible way to restrict the vibrational excitation degree of the molecule that is a collision partner and to maintain simultaneously a sufficiently high accuracy in the population estimate.



Radiosounding in the planned mission to Phobos
Abstract
The opportunities to study Phobos’ internal structure provided by radio methods are considered in this paper. The necessity of these studies is related to solution of the problem of the origin of the Martian moons. Radiosounding is one of the most efficient methods of analyzing the internal structure of small space objects and, in particular, that of Phobos. The new Boomerang project planned according to the Federal Space Program of Russia for 2016—2025 within the Expedition-M program aimed at the exploration of Phobos and delivery of soil samples from its surface to the Earth, as well as the specifics of a ballistic scenario of this expedition, provide a unique opportunity to carry out radioscopy of this space object to discover the internal structure Phobos and to solve the key problem of its origin. The model of Phobos’ internal structure, radiosounding ballistic conditions, analysis of optimum frequency range of sounding, and key parameters of the device required for the experiment are considered in this paper. The significance of proposed studies and opportunities for their implementation are discussed.



Construction of confidence regions in the problem of asteroid orbit determination
Abstract
The factors required for estimation of the accuracy of the confidence region construction in the problem of asteroid orbit determination are considered. Blunders and large systematic errors occurring in asteroid observations increase the sizes of confidence regions and cause their noticeable shift in the space of determined parameters. We present the factors that, in addition to analysis of discrepancies (O–C), provide an opportunity to estimate the efficiency of screening observations containing gross systematic errors. The developed factors have been tested for efficiency using simulated observations. The observations have been simulated by parameters set by us and assumed true. It is shown how the sizes of systematic errors and the number of observations with these errors influence the results of screening. All calculations have been performed within the Keplerian model of asteroid motion.



Origin of orbits of secondaries in the discovered trans-Neptunian binaries
Abstract
The dependences of inclinations of orbits of secondaries in the discovered trans-Neptunian binaries on the distance between the primary and the secondary, on the eccentricity of orbits of the secondary around the primary, on the ratio of diameters of the secondary and the primary, and on the elements of heliocentric orbits of these binaries are studied. These dependences are interpreted using the model of formation of a satellite system in a collision of two rarefied condensations composed of dust and/or objects less than 1 m in diameter. It is assumed in this model that a satellite system forms in the process of compression of a condensation produced in such a collision. The model of formation of a satellite system in a collision of two condensations agrees with the results of observations: according to observational data, approximately 40% of trans-Neptunian binaries have a negative angular momentum relative to their centers of mass.



Possible solar modulation of pacific decadal oscillation
Abstract
The Pacific Decadal Oscillation (PDO) is an El Niño-like pattern of Pacific climate variability, oscillating between its warm and cool phase about every 20–30 years as defined by oceanic temperature anomalies in the northeast and tropical Pacific Ocean. In this work, the authors investigate the possible connection between the PDO and solar activity by means of wavelet technique. The study shows obvious fluctuation characteristics in the PDO series. The modulation action from solar activity plays an important role in the oscillation of the Pacific, and there is a possible association existing in the PDO and solar activity on decade time scales.



Heritage of the Kepler mission: Special object KIC 8462852 and criticism of the cometary hypothesis
Abstract
Paradoxical properties of the KIC 8462852 object discovered in the course the Kepler mission are considered. It has been shown that the assumptions about the nature of the object as a swarm of cometary bodies, fragments resulting from catastrophic collisions of asteroids, or the KIC 8462852b exoplanet meet serious problems and even contradict the Kepler laws, if the eclipsing object is considered as a physical body orbiting a central star. According the energy and other requirements, the hypothetical orbit of KIC 8462852b does not meet the Dyson sphere conception either. In the paper, we used the materials of the study by Boyajian et al. (2015) and the subsequent publications on this theme.



On the dynamics of the exoplanetary system Kepler-413
Abstract
This study is concerned with the stability of motion of the circumbinary exoplanet Kepler-413b. The analysis is performed within the framework of a flat restricted three-body problem. The stability diagram is plotted in the plane of initial conditions “pericentric distance—eccentricity” using mass calculations of Lyapunov exponents. According to the diagram, the Kepler-413b planet is located in a stable resonance cell, confined by the mean-motion resonances 6: 1 and 7: 1 with a central binary star, which agrees with the conclusions of Kostov et al. (2014) based on calculations of the MEGNO parameter. It is shown that the value of the critical semimajor axis acquired from the empirical formula of Holman and Wiegert (1999) almost coincides with the value obtained directly from the stability diagram; at low and moderate eccentricities of the planetary orbit, the position of the calculated boundary of the chaos zone is in close agreement with the boundary predicted by Shevchenko’s theory (2015). If the planet were in the instability zone, its characteristic Lyapunov time would be only ~1 year. In accordance with the conclusions of Kostov et al. (2014), it has been shown that the planet Kepler-413b is outside the habitability zone of the system.


