Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 51, No 1 (2017)

Article

Near-Sun asteroids

Emel’yanenko V.V.

Abstract

As follows from dynamical studies, in the course of evolution, most near-Earth objects reach orbits with small perihelion distances. Changes of the asteroids in the vicinity of the Sun should play a key role in forming the physical properties, size distribution, and dynamical features of the near-Earth objects. Only seven of the discovered asteroids are currently moving along orbits with perihelion distances q < 0.1 AU. However, due to the Kozai–Lidov secular perturbations, the asteroids, having recently passed near the Sun, could by now have moved to orbits farther from the Sun. In this study, we found asteroids that have been recently orbiting with perihelion distances q < 0.1 AU. Asteroids may be on such orbits for hundreds to tens of thousands of years. To carry out astrophysical observations of such objects is a high priority.

Solar System Research. 2017;51(1):59-63
pages 59-63 views

The nature of terrains of different types on the surface of Venus and selection of potential landing sites for a descent probe of the Venera-D Mission

Ivanov M.A., Zasova L.V., Gerasimov M.V., Korablev O.I., Marov M.Y., Zelenyi L.M., Ignat’ev N.I., Tuchin A.G.

Abstract

We discuss a change in the resurfacing regimes of Venus and probable ways of forming the terrain types that make up the surface of the planet. The interpretation of the nature of the terrain types and their morphologic features allows us to characterize their scientific priority and the risk of landing on their surface to be estimated. From the scientific point of view, two terrain types are of special interest and represent easily achievable targets: the lower unit of regional plains and the smooth plains associated with impact craters. Regional plains are probably a melting from the upper fertile mantle. The material of smooth plains of impact origin is a well-mixed and representative sample of the Venusian crust. The lower unit of regional plains is the most widespread one on the surface of Venus, and it occurs within the boundaries of all of the precalculated approach trajectories of the lander. Smooth plains of impact origin are crossed by the approach trajectories precalculated for 2018 and 2026.

Solar System Research. 2017;51(1):1-19
pages 1-19 views

Current problems of dynamics of moons of planets and binary asteroids based on observations

Emel’yanov N.V.

Abstract

The general approach to studying the dynamics of moons of planets and asteroids consists in developing more and more accurate models of motion based on observational data. Not only the necessary ephemerides, but also some physical parameters of planets and moons are obtained this way. It is demonstrated in the present study that progress in this field is driven not only by the increase in accuracy of observations. The accuracy of ephemerides may be increased by expanding the observation time interval. Several problems arise on the way toward this goal. Some of them become apparent only when the procedure of observational data processing and use is examined in detail. The method used to derive astrometric data by processing the results of photometric observations of mutual occultations and eclipses of planetary moons is explained below. The primary contribution to the error of astrometric results is produced by the unaccounted noise level in photometric readings and the inaccuracy of received values of the albedo of moons. It is demonstrated that the current methods do not allow one to eliminate the noise completely. Extensive additional photometric measurements should be performed at different angles of rotation of moons and in different spectral bands of the visible wavelength range in order to obtain correct values of the albedo of moons. Many new distant moons of the major planets have been discovered in the early 21st century. However, the observations of these moons are scarce and were performed over short time intervals; as a result, some of the moons were lost. The necessity of further observations of these Solar System bodies is pointed out in the present study. Insufficient knowledge of asteroid masses is an obstacle to improving the accuracy of the ephemerides of Mars. The basic method for determining the masses of large asteroids consists in analyzing their influence on the motion of Mars, the Earth, and spacecraft. The masses of more than 100 large asteroids were determined this way. One of the principal techniques for Earth-based measurement of the masses of asteroids involves astrometric observations of binary asteroids. The determination of relative coordinates is made rather difficult by the apparent proximity of components. The success of these efforts depends on the availability of instrumentation and the expertise of observers skilled in adaptive optics and speckle interferometry. Collaboration between different research teams and observers is absolutely necessary.

Solar System Research. 2017;51(1):20-37
pages 20-37 views

On population of hazardous celestial bodies in the near-Earth space

Shustov B.M., Naroenkov S.A., Efremova E.V.

Abstract

In recent years, following the Chelyabinsk event of February 15, 2013, the lower size limit for presumably dangerous near-Earth objects has been decreased manyfold (essentially, from 140 m to ~10 m). This has drawn an increased attention to the properties of the population of decameter-sized bodies, in particular, the bodies that approach the Earth from the sunward side (daytime sky). The current paper is concerned with various properties of this population. The properties of the ensemble are analyzed using both observational data from other authors and theoretical estimates obtained by cloning virtual bodies. This question is of great practical importance, as the means for detecting such bodies (for example, the SODA project) need to be developed with consideration for the requirements imposed by the population properties. We have shown that the average rate of entering near-Earth space (NES), i.e., at distances less than ~1 million km from the Earth, for decameter-sized and larger bodies from the daytime sky (elongation values of entry points less than 90°) is approximately 620 objects per year for elongation angles of the detection point <90° and approximately 220 objects per year for elongation angles of the detection point <45°.

Solar System Research. 2017;51(1):38-43
pages 38-43 views

Asteroid Apophis: Evaluating the impact hazards of such bodies

Shuvalov V.V., Svettsov V.V., Artem’eva N.A., Trubetskaya I.A., Popova O.P., Glazachev D.O.

Abstract

Soon after the discovery of asteroid 99942 Apophis, it was classified as a potentially hazardous object with a high probability of an impact on the Earth in 2029. Although subsequent observations have substantially reduced the probability of a collision, it has not been ruled out; moreover, similar-sized asteroids in orbits intersecting the Earth’s orbit may well be discovered in the near future. We conduct a numerical simulation of an atmospheric passage and an impact on the Earth’s surface of a stony cosmic body with a diameter of 300 m and kinetic energy of about 1000 Mt, which roughly corresponds to the parameters of the asteroid Apophis, at atmospheric entry angles of 90° (vertical stroke), 45°, and 30°. The simulation is performed by solving three-dimensional equations of hydrodynamics and radiative transfer equations in the approximations of radiative heat conduction and volume emission. The following hazards are considered: an air shock wave, ejecta from the crater, thermal radiation, and ionospheric disturbances. Our calculations of the overpressure and wind speed on the Earth’s surface show that the zone of destruction of the weakest structures can be as large as 700–1000 km in diameter; a decrease in the flight path angle to the surface leads to a marked increase in the area affected by the shock wave. The ionospheric disturbances are global in nature and continue for hours: at distances of several thousand kilometers at altitudes of more than 100 km, air density disturbances are tens of percent and the vertical and horizontal velocity components reach hundreds of meters per second. The impact of radiation on objects on the Earth’s surface is estimated by solving the equation of radiative transfer along rays passing through a luminous area. In clear weather, the size of the zone where thermal heating may ignite wood can be as large as 200 km, and the zone of individual fire outbreaks associated with the ignition of flammable materials can be twice as large. In the 100-km central area, which is characterized by very strong thermal damage, there is ignition of structures, roofs, clothes, etc. The human hazardous area increases with the decrease in the trajectory angle, and people may experience thermal effects at distances of up to 250–400 km from the crater.

Solar System Research. 2017;51(1):44-58
pages 44-58 views

Physical and mechanical properties of stony meteorites

Slyuta E.N.

Abstract

The method for experimental research of physical and mechanical properties of stony meteorites is considered. Experimental data on the physical and mechanical properties of samples of three ordinary chondrites are reported. Ordinary chondrites are characterized by a well-defined three-dimensional (spatial) anisotropy of physical and mechanical properties, when a compression strength in one of the directions significantly exceeds that in the other two directions. A measured compression strength of ordinary chondrites is in the range from 105 to 203 MPa, while a tensile strength is in the range from 18 to 31 MPa. As follows from the available published data on the strength of carbonaceous chondrites, they are drastically different in properties from ordinary chondrites. The observed critical aerodynamic loads do not exceed a measured tensile strength value of ordinary chondrites, which is actually the upper limit restricting the maximum aerodynamic load for ordinary chondrites.

Solar System Research. 2017;51(1):64-85
pages 64-85 views