On Mutual Definability of Operations on Fields
- 作者: Korotkova R.M.1, Kudinov O.V.2, Morozov A.S.2
-
隶属关系:
- Novosibirsk State University
- Sobolev Institute of Mathematics
- 期: 卷 60, 编号 6 (2019)
- 页面: 1032-1039
- 栏目: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/172745
- DOI: https://doi.org/10.1134/S0037446619060119
- ID: 172745
如何引用文章
详细
We study the possibilities of defining some operations on fields via the remaining operations. In particular, we prove that multiplication on an arbitrary field can be defined via addition if and only if the field is a finite extension of its prime subfield. We give a sufficient condition for the nondefinability of addition via multiplication and demonstrate that multiplication and addition on the reals and complexes cannot be mutually defined by means of the relations with parameters which are preserved under automorphisms. We also describe the mutual definability of addition, multiplication, and exponentiation via the remaining two operations.
关键词
作者简介
R. Korotkova
Novosibirsk State University
编辑信件的主要联系方式.
Email: rozulka93@mail.ru
俄罗斯联邦, Novosibirsk
O. Kudinov
Sobolev Institute of Mathematics
编辑信件的主要联系方式.
Email: kud@math.nsc.ru
俄罗斯联邦, Novosibirsk
A. Morozov
Sobolev Institute of Mathematics
编辑信件的主要联系方式.
Email: morozov@math.nsc.ru
俄罗斯联邦, Novosibirsk
补充文件
