On Mutual Definability of Operations on Fields


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the possibilities of defining some operations on fields via the remaining operations. In particular, we prove that multiplication on an arbitrary field can be defined via addition if and only if the field is a finite extension of its prime subfield. We give a sufficient condition for the nondefinability of addition via multiplication and demonstrate that multiplication and addition on the reals and complexes cannot be mutually defined by means of the relations with parameters which are preserved under automorphisms. We also describe the mutual definability of addition, multiplication, and exponentiation via the remaining two operations.

作者简介

R. Korotkova

Novosibirsk State University

编辑信件的主要联系方式.
Email: rozulka93@mail.ru
俄罗斯联邦, Novosibirsk

O. Kudinov

Sobolev Institute of Mathematics

编辑信件的主要联系方式.
Email: kud@math.nsc.ru
俄罗斯联邦, Novosibirsk

A. Morozov

Sobolev Institute of Mathematics

编辑信件的主要联系方式.
Email: morozov@math.nsc.ru
俄罗斯联邦, Novosibirsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019