On Mutual Definability of Operations on Fields


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the possibilities of defining some operations on fields via the remaining operations. In particular, we prove that multiplication on an arbitrary field can be defined via addition if and only if the field is a finite extension of its prime subfield. We give a sufficient condition for the nondefinability of addition via multiplication and demonstrate that multiplication and addition on the reals and complexes cannot be mutually defined by means of the relations with parameters which are preserved under automorphisms. We also describe the mutual definability of addition, multiplication, and exponentiation via the remaining two operations.

Palavras-chave

Sobre autores

R. Korotkova

Novosibirsk State University

Autor responsável pela correspondência
Email: rozulka93@mail.ru
Rússia, Novosibirsk

O. Kudinov

Sobolev Institute of Mathematics

Autor responsável pela correspondência
Email: kud@math.nsc.ru
Rússia, Novosibirsk

A. Morozov

Sobolev Institute of Mathematics

Autor responsável pela correspondência
Email: morozov@math.nsc.ru
Rússia, Novosibirsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019