On Mutual Definability of Operations on Fields
- Autores: Korotkova R.M.1, Kudinov O.V.2, Morozov A.S.2
-
Afiliações:
- Novosibirsk State University
- Sobolev Institute of Mathematics
- Edição: Volume 60, Nº 6 (2019)
- Páginas: 1032-1039
- Seção: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/172745
- DOI: https://doi.org/10.1134/S0037446619060119
- ID: 172745
Citar
Resumo
We study the possibilities of defining some operations on fields via the remaining operations. In particular, we prove that multiplication on an arbitrary field can be defined via addition if and only if the field is a finite extension of its prime subfield. We give a sufficient condition for the nondefinability of addition via multiplication and demonstrate that multiplication and addition on the reals and complexes cannot be mutually defined by means of the relations with parameters which are preserved under automorphisms. We also describe the mutual definability of addition, multiplication, and exponentiation via the remaining two operations.
Palavras-chave
Sobre autores
R. Korotkova
Novosibirsk State University
Autor responsável pela correspondência
Email: rozulka93@mail.ru
Rússia, Novosibirsk
O. Kudinov
Sobolev Institute of Mathematics
Autor responsável pela correspondência
Email: kud@math.nsc.ru
Rússia, Novosibirsk
A. Morozov
Sobolev Institute of Mathematics
Autor responsável pela correspondência
Email: morozov@math.nsc.ru
Rússia, Novosibirsk
Arquivos suplementares
