Ricci Solitons and Killing Fields on Generalized Cahen—Wallach Manifolds


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study Ricci solitons and Killing fields on generalized Cahen–Wallach manifolds. The Ricci soliton equation provides a generalization of the Einstein equation on (pseudo-)Riemannian manifolds which is closely connected with Ricci flows. We prove that the Ricci soliton equation is locally solvable with any constant in the Ricci soliton equation on generalized Cahen–Wallach manifolds. Using a Brinkmann coordinate system, we study the Killing fields on these manifolds and give constraints on the dimension of the space of Killing fields. Also, we obtain solutions to the Killing equations for 2-symmetric Lorentzian manifolds in small dimensions.

作者简介

D. Oskorbin

Altai State University

编辑信件的主要联系方式.
Email: oskorbin@yandex.ru
俄罗斯联邦, Barnaul

E. Rodionov

Altai State University

编辑信件的主要联系方式.
Email: edr2002@mail.ru
俄罗斯联邦, Barnaul

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019