Ricci Solitons and Killing Fields on Generalized Cahen—Wallach Manifolds
- 作者: Oskorbin D.N.1, Rodionov E.D.1
-
隶属关系:
- Altai State University
- 期: 卷 60, 编号 5 (2019)
- 页面: 911-915
- 栏目: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/172680
- DOI: https://doi.org/10.1134/S0037446619050136
- ID: 172680
如何引用文章
详细
We study Ricci solitons and Killing fields on generalized Cahen–Wallach manifolds. The Ricci soliton equation provides a generalization of the Einstein equation on (pseudo-)Riemannian manifolds which is closely connected with Ricci flows. We prove that the Ricci soliton equation is locally solvable with any constant in the Ricci soliton equation on generalized Cahen–Wallach manifolds. Using a Brinkmann coordinate system, we study the Killing fields on these manifolds and give constraints on the dimension of the space of Killing fields. Also, we obtain solutions to the Killing equations for 2-symmetric Lorentzian manifolds in small dimensions.
作者简介
D. Oskorbin
Altai State University
编辑信件的主要联系方式.
Email: oskorbin@yandex.ru
俄罗斯联邦, Barnaul
E. Rodionov
Altai State University
编辑信件的主要联系方式.
Email: edr2002@mail.ru
俄罗斯联邦, Barnaul
补充文件
