Construction of Stable Rank 2 Bundles on ℙ3 Via Symplectic Bundles


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this article we study the Gieseker–Maruyama moduli spaces (e, n) of stable rank 2 algebraic vector bundles with Chern classes c1 = e ∈ {−1, 0} and c2 = n ≥ 1 on the projective space ℙ3. We construct the two new infinite series Σ0 and Σ1 of irreducible components of the spaces (e, n) for e = 0 and e = −1, respectively. General bundles of these components are obtained as cohomology sheaves of monads whose middle term is a rank 4 symplectic instanton bundle in case e = 0, respectively, twisted symplectic bundle in case e = −1. We show that the series Σ0 contains components for all big enough values of n (more precisely, at least for n ≥ 146). Σ0 yields the next example, after the series of instanton components, of an infinite series of components of (0, n) satisfying this property.

作者简介

A. Tikhomirov

National Research University Higher School of Economics

编辑信件的主要联系方式.
Email: astikhomirov@mail.ru
俄罗斯联邦, Moscow

S. Tikhomirov

Yaroslavl State Pedagogical University named after K. D. Ushinskii; Koryazhma Branch of Northern (Arctic) Federal University named after M. V. Lomonosov

编辑信件的主要联系方式.
Email: satikhomirov@mail.ru
俄罗斯联邦, Yaroslavl; Koryazhma

D. Vassiliev

National Research University Higher School of Economics

编辑信件的主要联系方式.
Email: davasilev@edu.hse.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019