Construction of Stable Rank 2 Bundles on ℙ3 Via Symplectic Bundles


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this article we study the Gieseker–Maruyama moduli spaces (e, n) of stable rank 2 algebraic vector bundles with Chern classes c1 = e ∈ {−1, 0} and c2 = n ≥ 1 on the projective space ℙ3. We construct the two new infinite series Σ0 and Σ1 of irreducible components of the spaces (e, n) for e = 0 and e = −1, respectively. General bundles of these components are obtained as cohomology sheaves of monads whose middle term is a rank 4 symplectic instanton bundle in case e = 0, respectively, twisted symplectic bundle in case e = −1. We show that the series Σ0 contains components for all big enough values of n (more precisely, at least for n ≥ 146). Σ0 yields the next example, after the series of instanton components, of an infinite series of components of (0, n) satisfying this property.

Sobre autores

A. Tikhomirov

National Research University Higher School of Economics

Autor responsável pela correspondência
Email: astikhomirov@mail.ru
Rússia, Moscow

S. Tikhomirov

Yaroslavl State Pedagogical University named after K. D. Ushinskii; Koryazhma Branch of Northern (Arctic) Federal University named after M. V. Lomonosov

Autor responsável pela correspondência
Email: satikhomirov@mail.ru
Rússia, Yaroslavl; Koryazhma

D. Vassiliev

National Research University Higher School of Economics

Autor responsável pela correspondência
Email: davasilev@edu.hse.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019