Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions
- 作者: Vinogradov O.L.1
-
隶属关系:
- St. Petersburg State University
- 期: 卷 58, 编号 2 (2017)
- 页面: 190-204
- 栏目: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171048
- DOI: https://doi.org/10.1134/S0037446617020021
- ID: 171048
如何引用文章
详细
We establish sharp estimates for the best approximations of convolution classes by entire functions of exponential type. To obtain these estimates, we propose a new method for testing Nikol’skiĭ-type conditions which is based on kernel periodization with an arbitrarily large period and ensuing passage to the limit. As particular cases, we obtain sharp estimates for approximation of convolution classes with variation diminishing kernels and generalized Bernoulli and Poisson kernels.
作者简介
O. Vinogradov
St. Petersburg State University
编辑信件的主要联系方式.
Email: olvin@math.spbu.ru
俄罗斯联邦, St. Petersburg
补充文件
