The equivalence classes of holomorphic mappings of genus 3 Riemann surfaces onto genus 2 Riemann surfaces


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Denote the set of all holomorphic mappings of a genus 3 Riemann surface S3 onto a genus 2 Riemann surface S2 by Hol(S3, S2). Call two mappings f and g in Hol(S3, S2) equivalent whenever there exist conformal automorphisms α and β of S3 and S2 respectively with fα = βg. It is known that Hol(S3, S2) always consists of at most two equivalence classes.

We obtain the following results: If Hol(S3, S2) consists of two equivalence classes then both S3 and S2 can be defined by real algebraic equations; furthermore, for every pair of inequivalent mappings f and g in Hol(S3, S2) there exist anticonformal automorphisms α− and β− with fα− = β− ◦ g. Up to conformal equivalence, there exist exactly three pairs of Riemann surfaces (S3, S2) such that Hol(S3, S2) consists of two equivalence classes.

Sobre autores

A. Mednykh

Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk Siberian Federal University

Autor responsável pela correspondência
Email: smedn@math.nsc.ru
Rússia, Krasnoyarsk

I. Mednykh

Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk Siberian Federal University

Email: smedn@math.nsc.ru
Rússia, Krasnoyarsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016