The equivalence classes of holomorphic mappings of genus 3 Riemann surfaces onto genus 2 Riemann surfaces
- Autores: Mednykh A.D.1, Mednykh I.A.1
-
Afiliações:
- Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk Siberian Federal University
- Edição: Volume 57, Nº 6 (2016)
- Páginas: 1055-1065
- Seção: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/170865
- DOI: https://doi.org/10.1134/S0037446616060124
- ID: 170865
Citar
Resumo
Denote the set of all holomorphic mappings of a genus 3 Riemann surface S3 onto a genus 2 Riemann surface S2 by Hol(S3, S2). Call two mappings f and g in Hol(S3, S2) equivalent whenever there exist conformal automorphisms α and β of S3 and S2 respectively with f ◦ α = β ◦ g. It is known that Hol(S3, S2) always consists of at most two equivalence classes.
We obtain the following results: If Hol(S3, S2) consists of two equivalence classes then both S3 and S2 can be defined by real algebraic equations; furthermore, for every pair of inequivalent mappings f and g in Hol(S3, S2) there exist anticonformal automorphisms α− and β− with f ◦ α− = β− ◦ g. Up to conformal equivalence, there exist exactly three pairs of Riemann surfaces (S3, S2) such that Hol(S3, S2) consists of two equivalence classes.
Palavras-chave
Sobre autores
A. Mednykh
Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk Siberian Federal University
Autor responsável pela correspondência
Email: smedn@math.nsc.ru
Rússia, Krasnoyarsk
I. Mednykh
Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk Siberian Federal University
Email: smedn@math.nsc.ru
Rússia, Krasnoyarsk
Arquivos suplementares
