Invariant affinor and sub-Kähler structures on homogeneous spaces
- Autores: Kornev E.S.1, Slavolyubova Y.V.2
-
Afiliações:
- Kemerovo State University
- Kemerovo Institute (Branch) of Plekhanov Russian University of Economics
- Edição: Volume 57, Nº 1 (2016)
- Páginas: 51-63
- Seção: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/170323
- DOI: https://doi.org/10.1134/S0037446616010067
- ID: 170323
Citar
Resumo
We consider G-invariant affinor metric structures and their particular cases, sub-Kähler structures, on a homogeneous space G/H. The affinor metric structures generalize almost Kähler and almost contact metric structures to manifolds of arbitrary dimension. We consider invariant sub-Riemannian and sub-Kähler structures related to a fixed 1-form with a nontrivial radical. In addition to giving some results for homogeneous spaces of arbitrary dimension, we study these structures separately on the homogeneous spaces of dimension 4 and 5.
Palavras-chave
Sobre autores
E. Kornev
Kemerovo State University
Autor responsável pela correspondência
Email: q148@mail.ru
Rússia, Kemerovo
Ya. Slavolyubova
Kemerovo Institute (Branch) of Plekhanov Russian University of Economics
Email: q148@mail.ru
Rússia, Kemerovo
Arquivos suplementares
