Lorentzian Manifolds Close to Euclidean Space


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the Lorentzian manifolds M1, M2, M3, and M4 obtained by small changes of the standard Euclidean metric on ℝ4 with the punctured origin O. The spaces M1 and M4 are closed isotropic space-time models. The manifolds M3 and M4 (respectively, M1 and M2) are geodesically (non)complete; M1 are M4 are globally hyperbolic, while M2 and M3 are not chronological. We found the Lie algebras of isometry and homothety groups for all manifolds; the curvature, Ricci, Einstein, Weyl, and energy-momentum tensors. It is proved that M1 and M4 are conformally flat, while M2 and M3 are not conformally flat and their Weyl tensor has the first Petrov type.

Sobre autores

V. Berestovskii

Sobolev Institute of Mathematics; Novosibirsk State University

Autor responsável pela correspondência
Email: vberestov@inbox.ru
Rússia, 4 Koptuyg Av., Novosibirsk, 630090; 1 Pirogov Str., Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019