Unique Determination of Locally Convex Surfaces with Boundary and Positive Curvature of Genus p ≥ 0
- 作者: Klimentov S.B.1,2
-
隶属关系:
- Southern Federal University
- Southern Mathematical Institute
- 期: 卷 60, 编号 1 (2019)
- 页面: 82-88
- 栏目: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/172200
- DOI: https://doi.org/10.1134/S0037446619010099
- ID: 172200
如何引用文章
详细
We prove the next result. If two isometric regular surfaces with regular boundaries, of an arbitrary finite genus, and positive Gaussian curvature in the three-dimensional Euclidean space, consist of two congruent arcs corresponding under the isometry (lying on the boundaries of these surfaces or inside these surfaces) then these surfaces are congruent.
作者简介
S. Klimentov
Southern Federal University; Southern Mathematical Institute
编辑信件的主要联系方式.
Email: sbklimentov@sfedu.ru
俄罗斯联邦, Rostov-on-Don; Vladikavkaz
补充文件
