Unique Determination of Locally Convex Surfaces with Boundary and Positive Curvature of Genus p ≥ 0
- Autores: Klimentov S.B.1,2
-
Afiliações:
- Southern Federal University
- Southern Mathematical Institute
- Edição: Volume 60, Nº 1 (2019)
- Páginas: 82-88
- Seção: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/172200
- DOI: https://doi.org/10.1134/S0037446619010099
- ID: 172200
Citar
Resumo
We prove the next result. If two isometric regular surfaces with regular boundaries, of an arbitrary finite genus, and positive Gaussian curvature in the three-dimensional Euclidean space, consist of two congruent arcs corresponding under the isometry (lying on the boundaries of these surfaces or inside these surfaces) then these surfaces are congruent.
Palavras-chave
Sobre autores
S. Klimentov
Southern Federal University; Southern Mathematical Institute
Autor responsável pela correspondência
Email: sbklimentov@sfedu.ru
Rússia, Rostov-on-Don; Vladikavkaz
Arquivos suplementares
