Light and low 5-stars in normal plane maps with minimum degree 5


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

It is known that there are normal plane maps (NPMs) with minimum degree δ = 5 such that the minimum degree-sum w(S5) of 5-stars at 5-vertices is arbitrarily large. The height of a 5-star is the maximum degree of its vertices. Given an NPM with δ = 5, by h(S5) we denote the minimum height of a 5-stars at 5-vertices in it.

Lebesgue showed in 1940 that if an NPM with δ = 5 has no 4-stars of cyclic type \(\overrightarrow {\left( {5,6,6,5} \right)} \) centered at 5-vertices, then w(S5) ≤ 68 and h(S5) = 41. Recently, Borodin, Ivanova, and Jensen lowered these bounds to 55 and 28, respectively, and gave a construction of a \(\overrightarrow {\left( {5,6,6,5} \right)} \)-free NPM with δ = 5 having w(S5) = 48 and h(S5) = 20.

In this paper, we prove that w(S5) ≤ 51 and h(S5) ≤ 23 for each (\(\overrightarrow {\left( {5,6,6,5} \right)} \)-free NPM with δ = 5.

Негізгі сөздер

Авторлар туралы

O. Borodin

Sobolev Institute of Mathematics

Хат алмасуға жауапты Автор.
Email: brdnoleg@math.nsc.ru
Ресей, Novosibirsk

A. Ivanova

Ammosov North-Eastern Federal University

Email: brdnoleg@math.nsc.ru
Ресей, Yakutsk

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016