Universal geometrical equivalence of the algebraic structures of common signature
- Авторы: Daniyarova E.Y.1, Myasnikov A.G.2, Remeslennikov V.N.1
-
Учреждения:
- Sobolev Institute of Mathematics, Omsk Branch
- Stevens Institute of Technology
- Выпуск: Том 58, № 5 (2017)
- Страницы: 801-812
- Раздел: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171435
- DOI: https://doi.org/10.1134/S003744661705007X
- ID: 171435
Цитировать
Аннотация
This article is a part of our effort to explain the foundations of algebraic geometry over arbitrary algebraic structures [1–8]. We introduce the concept of universal geometrical equivalence of two algebraic structures A and B of a common language L which strengthens the available concept of geometrical equivalence and expresses the maximal affinity between A and B from the viewpoint of their algebraic geometries. We establish a connection between universal geometrical equivalence and universal equivalence in the sense of equality of universal theories.
Об авторах
E. Daniyarova
Sobolev Institute of Mathematics, Omsk Branch
Автор, ответственный за переписку.
Email: evelina.omsk@list.ru
Россия, Omsk
A. Myasnikov
Stevens Institute of Technology
Email: evelina.omsk@list.ru
США, Hoboken
V. Remeslennikov
Sobolev Institute of Mathematics, Omsk Branch
Email: evelina.omsk@list.ru
Россия, Omsk
Дополнительные файлы
