Solving a variational parabolic equation with the periodic condition by a projection-difference method with the Crank–Nicolson scheme in time


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A solution to a smoothly solvable linear variational parabolic equation with the periodic condition is sought in a separable Hilbert space by an approximate projection-difference method using an arbitrary finite-dimensional subspace in space variables and the Crank–Nicolson scheme in time. Solvability, uniqueness, and effective error estimates for approximate solutions are proven. We establish the convergence of approximate solutions to a solution as well as the convergence rate sharp in space variables and time.

作者简介

A. Bondarev

Voronezh State University

编辑信件的主要联系方式.
Email: obliskuratsiya@bk.ru
俄罗斯联邦, Voronezh

V. Smagin

Voronezh State University

Email: obliskuratsiya@bk.ru
俄罗斯联邦, Voronezh

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017