Differences of idempotents in C*-algebras


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Suppose that P and Q are idempotents on a Hilbert space H, while Q = Q* and I is the identity operator in H. If U = PQ is an isometry then U = U* is unitary and Q = IP. We establish a double inequality for the infimum and the supremum of P and Q in H and PQ. Applications of this inequality are obtained to the characterization of a trace and ideal F-pseudonorms on a W*-algebra. Let φ be a trace on the unital C*-algebra A and let tripotents P and Q belong to A. If PQ belongs to the domain of definition of φ then φ(PQ) is a real number. The commutativity of some operators is established.

Sobre autores

A. Bikchentaev

Kazan Federal University

Autor responsável pela correspondência
Email: Airat.Bikchentaev@kpfu.ru
Rússia, Kazan

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017