Solvability of the inhomogeneous Cauchy–Riemann equation in projective weighted spaces


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We establish an analog of Hörmander’s Theorem on solvability of the inhomogeneous Cauchy–Riemann equation for a space of measurable functions satisfying a system of uniform estimates. The result is formulated in terms of the weight sequence defining the space. The same conditions guarantee the weak reducibility of the corresponding space of entire functions. Basing on these results, we solve the problem of describing the multipliers in weighted spaces of entire functions with the projective and inductive-projective topological structure. Applications are obtained to convolution operators in the spaces of ultradifferentiable functions of Roumieu type.

作者简介

D. Polyakova

Southern Federal University; Southern Mathematical Institute

编辑信件的主要联系方式.
Email: forsites1@mail.ru
俄罗斯联邦, Rostov-on-Don; Vladikavkaz

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017