Light and low 5-stars in normal plane maps with minimum degree 5


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It is known that there are normal plane maps (NPMs) with minimum degree δ = 5 such that the minimum degree-sum w(S5) of 5-stars at 5-vertices is arbitrarily large. The height of a 5-star is the maximum degree of its vertices. Given an NPM with δ = 5, by h(S5) we denote the minimum height of a 5-stars at 5-vertices in it.

Lebesgue showed in 1940 that if an NPM with δ = 5 has no 4-stars of cyclic type \(\overrightarrow {\left( {5,6,6,5} \right)} \) centered at 5-vertices, then w(S5) ≤ 68 and h(S5) = 41. Recently, Borodin, Ivanova, and Jensen lowered these bounds to 55 and 28, respectively, and gave a construction of a \(\overrightarrow {\left( {5,6,6,5} \right)} \)-free NPM with δ = 5 having w(S5) = 48 and h(S5) = 20.

In this paper, we prove that w(S5) ≤ 51 and h(S5) ≤ 23 for each (\(\overrightarrow {\left( {5,6,6,5} \right)} \)-free NPM with δ = 5.

Sobre autores

O. Borodin

Sobolev Institute of Mathematics

Autor responsável pela correspondência
Email: brdnoleg@math.nsc.ru
Rússia, Novosibirsk

A. Ivanova

Ammosov North-Eastern Federal University

Email: brdnoleg@math.nsc.ru
Rússia, Yakutsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016