Ideal Spaces of Measurable Operators Affiliated to A Semifinite Von Neumann Algebra


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Suppose that M is a von Neumann algebra of operators on a Hilbert space H and τ is a faithful normal semifinite trace on M. Let E, F and G be ideal spaces on (M, τ). We find when a τ-measurable operator X belongs to E in terms of the idempotent P of M. The sets E+F and E·F are also ideal spaces on (M, τ); moreover, E·F = F·E and (E+FG = E·G+F·G. The structure of ideal spaces is modular. We establish some new properties of the L1(M, τ) space of integrable operators affiliated to the algebra M. The results are new even for the *-algebra M = B(H) of all bounded linear operators on H which is endowed with the canonical trace τ = tr.

Sobre autores

A. Bikchentaev

Kazan Federal University

Autor responsável pela correspondência
Email: Airat.Bikchentaev@kpfu.ru
Rússia, Kazan

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018